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Abstract

This paper demonstrates the techniques of likelihood prediction with the generalized

linear mixed models. Methods of likelihood prediction is explained through a series of ex-

amples; form a very classical to more complicated ones. The examples show that in simple

cases likelihood prediction (LP) coincides with already known best frequentist practice such

as the best linear unbiased predictor. The paper also outlines a way to deal with the co-

variate uncertainty while producing predictive inference. Using a Poisson error-in-variable

generalized linear model, it has been shown that in complicated cases LP produces better

results than already know methods and the one produced by ignoring the complication of

the data generating procedure.

Key words: Predictive likelihood, Pro�le predictive likelihood, Stochastic covariate,

Coverage interval, Future value prediction, Credit risk prediction.

1 Introduction

Predictive inference is a tricky task, especially for non-Bayesian statisticians (Bjørnstad, 1990

and Hinkley, 1979). The core of the problem was understood during the foundational period

of statistics (see e.g. Pearson 1920) but it took a long time for the non-Bayesian statisticians

to come up with a set of reasonable proposals on the predictive tools with Lauritzen (1974)

and Hinkley (1979) being credited as the earliest theoretically most sound references. Unless
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otherwise stated, by prediction, we mean the prediction of one or more unobserved (observable

or not) variable or some function of them after observing the observable variables. Let, y =

(y1; y2; � � � ; yn)T be the vector observations on the response, Y; Xn�p be the matrix of associated

observed covariates, y� = (y�1; y
�
2; � � � ; y�m) be the future observations on Y which are not observed

and _X�m�p be the associated covariate matrix where some of its elements are known and some

are unknown.

Note that we use an asteric ("*") in the superscript (e.g. X�) to indicate that the whole

variable, vector or matrix or a part of it is not observed, but they are observable. The covariates

and the design matrices associated y� are denoted with an over head accent- dot (".", e.g. _X).

As per convention, we use upper case letters to indicate variables, lower cases to indicate their

realized values and bold faces to indicate vectors and matrices.

The unknown elements in _X are not necessarily the missing values in the ordinary sense, e.g.

non-response in a survey as in Bjørnstad (1996) and Bjørnstad and Sommervoll (2001), rather

they might be some future values which can be observed only in future time while the prediction

is made at current time.

We further assume that, given Xn�p and information on the clustering of Y; the response

process, Y; can be modeled with a suitable generalized linear mixed model (GLMM). The un-

known future covariates can also be modelled with a suitable stochastic model. The problem

of interest is to predict Y � itself or some function S = s (Y �) and provide a measure of uncer-

tainty of those predictions based on observed data on Y and X. Some illustrations of the above

problem with known _X are given Lee et al. (2006).

Natural examples of stochastic covariates with generalized linear models come from the time

series models (Slud and Kedem, 1994; Startz, 2008), dynamic panel discrete choice models

(Honoré and Kyriazidou, 2000) and measurement error models (Buzas and Stefanski, 1996).

Here we motivate the application of unknown future covariates from the credit risk modeling�s

view point. Assume, Y represent whether a credit is default or not and X consists of the

respective �rm level accounting data, industry classi�cation of the �rm, credit bureau observation

(comments) and macro variables e.g. slope of yield curve, output gap etc. (see e.g. Carling et

al. (2004) and Du¢ e et al. (2007)). Some of the covariates, e.g. �rm�s total debt, sales and

macro economic indices, are stochastic and their future values can not be observed at current
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time when the prediction is being made. Assume that we model Y given X using a suitable

GLMM and the unobserved components of _X� with missing future values are modelled with a

suitable time-series model. Then, the problem remains to predict Y � (or S) and to provide a

measure of uncertainty associated with the prediction.

The issue of stochastic covariate is also dealt, in the literature of credit risk modelling, with

so called doubly-stochastic models using the framework of survival analysis (Du¢ e et al., 2007;

Pesaran et al., 2006). However, those work did not give proper attention to the uncertainties

caused by the stochastic covariates nor did they distinguish the problem of estimation from the

problem of prediction. Thus the predictive methods presented in this paper may also be applied

to those early works with a view to possible improvement of the predictive performances of their

models.

Given a prediction problem in hand one can either try to �nd a frequentist point prediction,

e.g. the best linear unbiased predictor (BLUP), and associated prediction error or try to pro-

duce a likelihood prediction (Bjørnstad, 1990) or can follow the Bayesian approach. The �rst

approach does not have a common analytical framework moreover the existence of the BLUP

is not guaranteed, in general. Bayesian approach is rather straightforward however the choice

of a particular prior as well as the concept of prior distribution may be criticized. Likelihood

principle ( Bjørnstad, 1996; Berger and Wolpert, 1988) provides a uni�ed principle and ana-

lytical framework to deal with any statistical inference including the prediction of future and

unobserved values. This paper explores the last option in the context of GLMM.

The contributions of this paper are as follows. It o¤ers a short overview of the likelihood

prediction through a series of rather simple prediction problems. The examples show that the

likelihood prediction can be implemented in a straightforward way and its solutions often coincide

with already known best frequentist prediction, where such a best prediction exists. The paper

also demonstrates the application of likelihood prediction in rather complicated problems such

as error in variable generalized linear models and GLMM where a best frequentist prediction

such as BLUP is not available. Through an example with a Poisson error-in-variable model we

show, through simulation, that likelihood prediction does a better job than the already existing

solutions. The paper also outlines an analytical guideline to implement the likelihood prediction

with GLMM under covariate uncertainty.
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The rest of the paper is organized as follows. Section 2 brie�y introduces the principles

likelihood prediction through two classical examples. Section 3 extends likelihood prediction

for GLMM with covariate uncertainty. Section 4 presents several examples of the likelihood

prediction under covariate uncertainties. Section 5 o¤ers a comparative discussions on the

several proper predictive likelihoods. Section 6 concludes.

2 Likelihood prediction

An elegant survey on the methods of likelihood prediction is given in Bjørnstad (1990). Often,

the prediction statement is summarized in terms of probability inequality which is called the

prediction interval. A review of the di¤erent methods of producing non-Bayesian prediction

interval is presented in Patel (1989). To illustrate the likelihood prediction we take a classic

example (see example 1) that was presented in Pearson (1920), with a reference to Laplace (1774)

as the originator, and is also discussed by many others including Hinkley (1979), Bjørnstad

(1990) and Pawitan (2001).

Example 1. An event has occurred p times out of p + q = n trials, where we have no apriori

knowledge of the frequency of the events in the total population of occurrences. What is

the probability of its occurring r times in a further r + s = m trials?

The above problem (example 1) can be translated in terms of the notation system given

in Section 1 as: Y = (Y1; Y2; � � � ; Yn) are iid Bernoulli distributed with E (Yi) = �; Y � =�
Y �n+1; :::; Y

�
n+m

�
; Yi?Yj 8i&j = 1; 2; :::; n + m;

Pn
i=1 yi = p; S =

Pn+m
i=n+1 y

�
i = r and the

interest is to predict r given p, n and m: Example 1 quali�es as a fundamental statistical

problem which was solved in Laplace (1774) with some di¢ culty (see Pearson, 1920; Stigler,

1986) using Bayesian approach. The Bayesian solution to the problem is straightforward and

with a �at prior for � the posterior predictive distribution of r is given as (see Bjørnstad(1990))

p (rjp; n) =
�
m
r

��
n
p

��
m+n
r+p

� n+ 1

n+m+ 1
; r = 0; 1; :::;m (1)

Due to the unavailability of the concept of prior distribution, a non-Bayesian solution is not

easy to formulate. If � were known the distribution of r would be Binomial with mean m�
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hence a non-Bayesian mean predictor of r would be E (rj�;m) = m�: Thus a naive prediction

(NP) of r is given as er = m p
n where � is replaced by the maximum likelihood (ML) estimate

of it obtained from the observed data. Though, b� = p
n is the maximum likelihood estimator of

�; er is not a maximum likelihood predictor. In fact, classical likelihood theory does not allow

its application as a predictive criteria (Hinkley, 1979). A likelihoodist sees the above problem

as the one dealing with two unknowns, � and r where r is of inferential interest and � being

a nuisance parameter. The above line of thinking leads the likelihoodists to construct a joint

likelihood function (Bjørnstad, 1990) of � and r as

L (r; �jp;m; n) = L (rjm;n; p; �)L (�jp;m; n)

=

�
m

r

��
n

p

�
�p+r (1� �)n+m�p�r

Though the above L (r; �jp;m; n) is justi�ed as a likelihood for prediction, the likelihood principle

does not clearly state as to what one should do with � and how the information about r contained

in L (r; �jp;m; n) is to be extracted (Berger and Wolpert, 1989). At this point the likelihoodists

introduce the method of pro�le likelihood (Pawitan, 2001) which essentially maximizes the

likelihood with respect to a subset of parameters while treating the remaining parameters as

constant (known). For example 1, we have the following pro�le likelihood.

Lp (rjp;m; n) = sup
�
L (r; �jp;m; n)

) Lp (rjp;m; n) /
�
m

r

��
n

p

�
(p+ r)p+r (m+ n� p� r)m+n�p�r

The likelihhodists treat Lp di¤erently from the formal (or estimative) likelihood in the sense

that Lp is often normalize to mimic a Bayesian posterior density for r. Such a normalization is

justi�ed since r; unlike the �xed parameters �, has a probability distribution. Using Stirling�s

approximation to Lp (rjp;m; n) it can be shown that

Lp (rjp;m; n) /
p (rjp; n)rb�� �1� b��� (2)
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where, p (rjp; n) is the Bayesian posterior predictive density of r with respect to �at prior

and b�� = p+r
m+n is obtained by maximizing L (r; �jp;m; n) w.r.t. �: A critical drawback of

Lp (rjp;m; n) is that it replaces the nuisance parameter with its MLE which introduces an

additional uncertainty in the predictive distribution thus some adjustment is necessary. We also

see that a multiplicative adjustment term of

rb�� �1� b��� makes L(1)p (rjp;m; n) = p (rjp; n)

where L(1)p =

rb�� �1� b���Lp is the pro�le adjusted predictive likelihood: Further note that the
adjustment term has the form

rb�� �1� b��� / I�1=2
�=b�� where I�=b�� is the observed Fisher�s infor-

mation of � obtained from log (L (r; �jp;m; n)) i.e. I = �@2log(L(r;�jp;m;n))
@�2

. In matter of fact, the

above adjustment can always make L(1)p (zjy) / p (zjy) up to an order O
�
n�1

�
(Davison, 1986).

Thus we treat L(1)p as equivalent to the Bayesian posterior prediction (PP) with �at prior. The

above equivalence of the predictive likelihood and the posterior predictive density with �at prior

is easy understood. Since, the Bayesian posterior with �at prior is mathematically equivalent to

the (estimative) likelihood function hence if there exist any predictive likelihood then the latter

should be equivalent to the posterior predictive distribution with �at prior.

Predictive statistics for examples 1 and 2 are given in Table 1. For m = 1, L(1)p (or PP) gives

E (rjp;m = 1; n) = P (r = 1jp;m = 1; n) = p+1
n+2 which is di¤erent from the NP which gives er = p

n

(see Table 1): The above di¤erence matters for the cases with small n and extreme observed p:

Example 1 is a nice example of statistical prediction with independently and identically

distributed (iid) variables. Next we illustrate the problem for a situation with non-identical

distribution by using an example of a linear regression model.

Example 2: Let us assume a regression model, yi = � + �xi + "i (i = 1; 2; :::N) where, "i
iid�

N
�
0; �2

�
with � being known: We observe the pair sequence fyi; xig for i = 1; 2; ::n (n <

N); also xi for i = n + 1; n + 2; :::; N are known but we do not observe yi for i =

n+1; n+2; :::; N . The problem here is to predict those unobserved yi�s which are observable

in future.

In example 2, we have observed data, y = fyig and X = fxjg (i = 1; 2; :::; n), unobserved fu-

ture values y� =
�
y�n+1; y

�
n+2; :::; y

�
N

�T
; known future covariates, _X = fxjg (j = n+1; n+2; :::; N)

and nuisance parameters � = (�; �) : A naive prediction of y�j (j = n+ 1; n+ 2; :::; N) is given

as ey�j = b� + b�xj where, b� and b� are the ordinary least square estimates (which are also the
6



MLEs in this case) of � and � respectively obtained from the observed data. A naive vari-

ance estimator for y�j is given as V ar
�ey�j� = V ar (b�) + x2jV ar �b�� + 2xjCov �b�; b�� which

does not account for the uncertainties involved with the estimation of the nuisance para-

meters. A reasonable measure of uncertainties in ey�j is easily computed in this case and is
given by V ar

�ey�j� = �2
�
1 + _xj

�
XTX

��1
_xTj

�
where X is the design matrix of the observed

data i = 1; 2; :::; n and _xj is the jth row of the design matrix, _X; associates with y�: The

above ey�j is known as the best (having minimum mean squared prediction error) linear unbi-

ased predictor (BLUP). In cases where � is unknown it is replaced by it�s unbiased estimate,

e�2 = 1
n�2

Pn
i=1

�
yi � b�� b�xi�2 : The pro�le adjusted predictive likelihood for this problem

(example 2) is given as

L
(1)
P (Y �jy; �) / exp

�
� 1

2�2

�
y�F �XF b���T �y�F �XF b���� j�2 �XTFXF ��1 j� 1

2

) L
(1)
P (Y �jy; �) / exp

�
�1
2

�
y� � _Xb��T ��2 �I+ _X

�
XTX

��1 _XT���1 �y� � _Xb��� (3)

where, y�TF =
�
yT ;y�T

�
; b�� is the MLE of � =(�; �)T based on the full data, i = 1; 2; :::N ,

XTF =
�
XT ; _XT

�
and b� = �b�; b��T is the MLE based on the observed data, i = 1; 2; :::; n: We

skip the detailed mathematical derivation of (3) and refer the readers to Eaton and Sudderth

(1998) for the special matrix identities that facilitates the easy derivation of (3). The above

predictive likelihood (3) is recognized as the kernel of a multivariate normal distribution i.e.

L
(1)
P (y�jy; �) � N(N�n)

�
_Xb�; �2V� where, V = I + _X

�
XTX

��1 _XT : Therefore, in this case,
the naive prediction coincides with the mean of the predictive likelihood. If �2 is unknown,

the above mathematical derivation becomes very tedious therefore, we skip the latter case.

Interested readers are referred to Bjørnstad (1990) for further results . The predictive statistics

for example 2 obtained through the di¤erent methods are presented in table 1:
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Table 1 Predictive statistics for examples 1 and 2 produced by di¤erent methods

Example Methods Point Predictor Predictive Variance Predictive distribution

Example 1 NP E (r) = m p
n m p

n

�
1� p

n

�
Binomial(m; pn)

L
(1)
P E (r) = m(p+1)

n+2
m(p+1)(n�p+1)
(n+2)2(n+3)

(mr )(
n
p)

(m+nr+p )
n+1

n+m+1 ; r = 0; 1; :::;m

BLUP E (r) = m p
n m p

n

�
1� p

n

�
m+n�1

n NA

Example 2 NP E (Y �) = _Xb� �2 _X
�
XTX

��1 _XT N
�
_Xb�; �2 _X �XTX��1 _XT�

L
(1)
P E (Y �) = _Xb� �2V N

�
_Xb�; �2V�

BLUP E (Y �) = _Xb� �2V N
�
_Xb�; �2V�

Note: V= I+ _X
�
XTX

��1 _XT
Example 2 is still a very simple one for the following three reasons. First, it considers

Y ? Y �, second, the model can be presented in a form y = X� + " and third, the distribution

of " is multivariate normal which facilitates the easy derivation of the frequentist�s predictive

pivot. The independence of Y and Y � disappears immediately as we consider a mixed model

while we loose the second and third advantages as we adopt a GLMM other than a linear mixed

model. The situation becomes more complicated for a pure friquentist as soon as the covariate

uncertainty comes in while the likelihood approach is still applied in the same manner as shown

above.

3 Prediction with GLMM

For observed Y and X; a generalized linear mixed model can be presented through the following

�ve assumptions: i) Y = fyiktg ; i = 1; 2; :::; nkt; k = 1; 2; :::;K; t = 1; 2; :::; T ; is observed

independently at a given value of the covariate fxiktg where xikt is a 1�q row vector representing

the ith row of the design matrix X ; and a given realization of the random e¤ect ukt, ii) as xikt

and ukt in�uence the distribution of yki through a linear function �ikt = xikt� + ukt which

is called the linear predictor, iii) conditional on ukt, �ki = E(ykijuki) satis�es g(�) = � for

some function g which is called a link function, iv) conditional on ut=(ut1; ut2; :::; utK)
T , the

distribution of yikt belongs to the exponential family of distributions and v) ut follows a marginal

distribution, h(u): Often, ut is assumed to have an independent multivariate normal distribution

i.e. utv NK (0;D) : Alam and Carling (2008) and Alam (2008) provides discussion on the above
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GLMM in the context of credit risk modeling where i represents the loan, k represent the industry

(sector) the loan belongs to and t represents time (quarter): The goal here is to predict future

observation Y � =
�
y�i0kt0

	
or some function of it, S = s (Y �) based on the currently observed

data where i0 and t0 may go beyond nkt and T respectively but the number of industries (K)

is assumed to be �xed. Further assume that the design matrix associated with y� denoted as

_X� can be partitioned as _X� =
�
_XC j _X�S

�
where _XC is currently known and _X�S is currently

unknown and can only be observed in the future.

In a simpler case Booth and Hobert (1998) suggested a prediction method for GLMM which

they called conditional mean squared error prediction (CMSEP). The prediction problem pre-

sented here is di¤erent from and more general than the usual prediction with GLMM, e.g. those

considered in Booth and Hobert (1998), for the following reasons. The additional t-dimension

was not considered in Booth and Hobert (1998) which enabled them to use the same estimate

of ukjy for the prediction of y
�
j0k0 and they did not consider the prediction problem for k0 > K

. Therefore, CMSEP is suitable for the �tted values (in sample prediction) and not for the real

(out of sample) prediction. Moreover, they did not consider covariate uncertainty, other than

the uncertainties involved with the random e¤ects.

The above prediction problem �ts well under the framework of unobservable variables, nui-

sance variable and parameters�likelihood presented in Berger and Wolpert (1988; sections 3.5.2

and 3.5.3). In this case � =
�
Y �; _X�

S

�
with Y � being of interest, the random e¤ects, u is the

nuisance variable and any parameter involved with the distributions of Y; � and u is a nuisance

parameter. For further derivation of the predictive criteria we can use the "nuisance variables

likelihood principles" (Berger and Wolpert, 1988).

3.1 Derivation of the predictive likelihood for GLMM

In this case, we have observed data, X = (XC ; XS) where XC consists of non-stochastic and

XS consists of stochastic covriates and Y (i = 1; 2; :::; nkt; k = 1; 2; :::;K; t = 1; 2; :::; T ); future

covariates _X� =
n
_Xi0kt0;C ;

_X�
i0kt0;S

o
(i0 = 1; 2; :::; nk0t0 ; t

0 2 1; 2; :::;max (t0; T ))) of which _Xi0kt0;C

is currently known, future response, y� =
�
y�i0kt0

	
, which we want to predict and ut and ut0

are the random e¤ects which are independently distributed as N (0;D) where D is an unknown

but �xed positive de�nitive matrix. Denoting � =(�; �; vech (D)) and � =(�1; :::; �F ) as the
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parameter vector involved with the GLMM given X and _X� and with the distribution of _X�
S

respectively. Assuming no overlap between � and �; i.e. �\� = ? , the joint likelihood function

for this case is given by

L (�;u;�;�jy; X;XC) = f
�
y; �;u; _X�

S j�;�;X; _XC
�

(4)

= f
�
y;y�jX; _X�;u;�

�
f (XS ; X

�
S j�) f (ujD) (5)

The principle of marginal likelihood (Berger and Wolpert, 1988) tells us that any nuisance

variable should be integrated out from the likelihood at the �rst hand. Though we assumed

k0 2 (1; 2; :::;K), the above likelihood (4) can easily be extended for k0 =2 (1; 2; :::;K) : Without

loss of generality we can denote the clusters (k dimension) in observed data with 1 to K and

any cluster appears in the predictive space but not in observed data with (k+1), (k+2) and so

on up to K 0and do the same for t which goes up to T 0. Therefore, the joint likelihood of �; �;�

is given by

L (�; �;�jY ) =
Z
� � �
Z 1

�1

max(T;T 0)Y
t=1

f
�
y;y�jX; _X�;u;�

�
f
�
XS ; _X

�
S jX; _X�

C ;�
�
f (utjD) d (ut)

(6)

The integration involved with (6) is generally analytically intractable even only for the observed

data likelihood (Lee et al. 2006). In general, for the GLMM, equation (6) can be presented, in

matrix notations, as

L (�; �;�jY ) =

0@Z � � �
Z 1

�1

max(T;T �)Y
t=1

exp

"
y�TF;t�t � 1T b (�t)

�
+ 1T c

�
y�F;t; �

�#
f (ut) d (ut)

1AL� _X�
S ;�

�
(7)

where, y�TF;t=
�
yTt ;y

�T
t

�
is the vector of observed and unobserved responses, � = f�iktg is the

vector of canonical parameters such that with canonical link �t = �t = XF;t� + Ztut where

XF =
�
XTt ; _X

�T
t

�T
is the design matrix associated with � for the data set at t (quarter) and Zt

is the design matrix associated with ut =
�
u1t; u2t; :::; uK0 t

�T , b () is called the cumulant function
and it is a function in "S" convention i.e. b (�1; �2) = (b (�1) ; b (�2)), � is the dispersion parameter

of the conditional mean model and L
�
_X�
S ;�

�
= f

�
XS ; _X

�
S jXC ; _XC ;�

�
. For binomial and
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Poisson GLMM, � = 1:

Applying Laplace approximation to (7) the joint likelihood is simpli�ed , after ignoring terms

having zero expectation (see Breslow and Clayton, 1993; section 2.1), as

L (�; �;�jy) � jI+D�1ZWZT j�
1
2 exp

�
�y

�T
F � � 1T b (�)

�
� 1
2
tr
�
D�1uTu

�
� 1T c (y�F ; �)

�
ju=eu L

�
_X�
S ;�

�
(8)

where, W is the GLM weight matrix (McCullagh and Nelder, 1989) and eu = futgT 0�K0 is the

maxima of the integrand function in (7) w.r.t. u: For the detailed derivation of (8) readers are

referred to Breslow and Clayton (1993) and Wand (2002). The remaining task is to eliminate

the nuisance parameter �; � and _X�
S from the model. Since _X�

S has probability distribution

it can either be integrated out or pro�led out while � and � can only be pro�led out. Since,

adjusted pro�le likelihood is same as integrating the nuisance parameter out using Laplace

approximation, we can pro�le out ! =
�
�;�; _X�

S

�
altogether from (8). Thus we obtain the

pro�le adjusted predictive likelihood for Z as

L
(1)
P

�
y�jy;X; _XC

�
= LP

�
y�jy;X; _XC

�
jI� (b!�) j�1=2 (9)

where, LP
�
y�jy;X; _XC

�
= sup

!

n
l
�
!;y�jy;X; _XC

�o
with l = logL

�
!;y�jy;X; _XC

�
and

I� (b!�) = fI�vw (b!�)g with I�vw (b!�) = � @2l
@!v@!w j!=b!� is the observed information matrix for !

with �xed y�. Though, equation (9) looks very simple, its exact analytical derivation may be a

challenging job, depending on (8). After L(1)P has been computed one can predict Z from (9) in

the following two ways (Bjørnstad, 1996)

a) mean prediction: normalize L(1)P (y�jy) to make it a pdf (pmf) and predict ŷ� = EP (y�jy) :

Also base any statistical inference on the normalized L(1)P (y�jy) and

b) ML prediction: predict by� that maximizes L(1)P (y�jy) ; for continuous Y; and treat L(1)P (y�jy)

as a likelihood function to make inference on y�:

Bjørnstad (1996) inclined to prefer mean prediction over ML prediction considering the

shortcomings of ML for the correlated data e.g. b�� and y� are not, in general, invariant under
one�to�one parameter transformation. Since, L(1)P is the approximate Bayesian posterior pre-
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dictive density with �at prior, we may use the available Bayesian MCMC procedures (Gelman

et al., 2004) to facilitate the computation of ŷ� as the posterior mode or the posterior mean:

The prediction problem and its approximate likelihood solution presented in (4)�(8) are very

general. The above technique is also applicable to the prediction of credit defaults under the

modeling framework of Carling et al. (2004) and Alam (2008). For further simpli�cation of

predictive density (9) we require speci�c model for Y and XS : In the following section some

special cases and their respective simpli�cations of (9) are presented through applied examples.

4 Examples of likelihood prediction under covariate uncertainty

Prediction problems with GLM and GLMM appear in may applications and they are dealt with

a variety of ways, some of which are mentioned in section 1. Here we pick some examples from

the existing literature and demonstrate their solutions via predictive likelihood approach. The

papers containing the following examples are not purposively selected rather they are the only

articles on prediction with GLM and GLMM under uncertainty in the response or covariates

found in the existing literature. The following problem (example 3) is related to survey sampling

and is motivated by an error-in-variable super population model presented in Bolfarine (1991).

Example 3 Assume, a �nite population is denoted by P = (1; 2; :::; N) where N is known

and we have a sample s of size n from P. We denote the sample observations by

y =(y1; y2; :::; yn) and the unobserved part of the population by y� =
�
y�n+1; :::y

�
N

�
: After

the sample S has been observed, our target is to predict the �nite population total, i.e.

T =
P
i2S yi+

P
i2(P�S) y

�
i and to provide a measure of uncertainty about the prediction:

However, in reality the yi�s are not directly observable, rather we have to use some instru-

ment to measure yi which gives the observation Xi such that Xi = yi + �i where �i is a

random error which is independent of yi:

Solution of Example 3 This problem is di¤erent from the ones concerning statistical model-

ing since the Yi�s are constants in the population, P. However, that does not prohibit us to

assume that yi�s are realizations of Yi from a super population having normal distribution

with some constant mean and variance. It is also assumed that �i�s are distributes as

normal with 0 mean and constant variance: Under the above assumption a naive predictor

12



of T is eT = NXS ; where XS =
1
n

Pn
i=1Xi and a variance of eT is also easily calculated

and it is found to be the BLUP in such situation (Bofarine, 1991). In order to work

it out using likelihood approach we assume that Yi~N
�
�; �2

�
, �i~N

�
0; �2�

�
and Yi?�i

which imply XijYi = yi~N
�
yi; �

2
�

�
. Thus we have, � = (�; �; ��) and � = (y1; :::; y

�
N ) ;

X = (X1; X2; :::; Xn) ; X
� =

�
X�
n+1; :::; X

�
N

�
with T =

P
i2S yi +

P
i2(P�S) y

�
i being of

interest. For simplicity, we assume � and �� are known (see Bolfarine (1991) and Buzas

and Stefanski (1996) for further discussion on the problems induces by unknown � and

��).

The above normality gives the following likelihood

L�;� =
NY
i=1

(f (Xijyi; �) f (yij�))

=
nY
i=1

(f (Xijyi; �) f (yij�))
NY

i=n+1

Z
X�
i

f (X�
i jy�i ; �) f (y�i j�) dX�

i

=
nY
i=1

(f (Xijyi; �) f (yij�))
NY

i=n+1

f (y�i j�)

) L�;� _ exp
"
�1
2

(
nX
i=1

�
yi �Xi
��

�2
+

nX
i=1

�
yi � �
�

�2
+

NX
i=1+1

�
y�i � �
�

�2)#
(10)

Denoting, Y
�
= 1

N

�Pn
i=1 yi +

PN
i=n+1 y

�
i

�
we have

) L
(1)
P (�jX;��; �) _ exp

24�1
2

8<:
nX
i=1

�
yi �Xi
��

�2
+

NX
i=1

 
yi � Y

�

�

!29=;
35 (11)

Di¤erentiating (11) w.r.t. yi8i 2 S and setting them to zero gives
Pn
i=1 yi =

Pn
i=1Xi.

Again doing the same for i =2 S we have
PN
i=n+1 y

�
i =

N�n
n

Pn
i=1Xi. Adding the above

two results we obtain bT = N
n

Pn
i=1Xi = NXS : The above bT is an unbiased estimator for

T and its variance can be calculated as

V ar
�bT � T� = V ar

 
NXs �

NX
i=1

Yi

!

= N
1� f
f

�2 +
N

f
�2�
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where, f = n
N :

From equation (10) we see that L�;� is proportional to the Bayesian posterior with �at prior.

The Laplace approximation applied to L�;� in order to obtain L
(1)
P (�jX;��; �) is exact since the

log-posterior is a quadratic function. Thus the Bayesian solutions presented in Bolfarine (1991)

are the same as the predictive likelihood solutions. The above bT is also the BLUP (Bolfarine,
1991).

The above example (example 3) is, in fact, the one deals with measurement uncertainty in

the response but not in the covariate. A theoretical example of dealing with uncertainties both

in the Y and the X space under the linear model�s framework is also presented in Bolfarine

(1991). Next, we see another example (see example 4) of prediction problem with GLM under

covariate uncertainty. We consider a Poisson GLM with one covariate X which is measured with

error. This example is originally presented in Huwang and Hwang (2002) but their method of

solution is di¤erent.

Example 4: Consider a Poisson model, YijUi v Poisson (�i), log (�i) = �i = �0 + �1Ui and

Xi = Ui + �i 8i = 1; 2; :::; n. We also assume that Ui v N
�
�u; �

2
u

�
; �i v N

�
0; �2�

�
and

Ui ? �j 8i&j: Our target is to predict Yn+1 = y�n+1 when Xi, i = 1; 2; :::n + 1; and Yi

,i = 1; 2; :::; n, are observed but Ui�s are not observable.

Solution of Example 4 From the virtue of the normality and independence of U and � we

have Vi = (Ui; Xi)
T = N2 (12�u;�) where, 12 is a 2 � 1 column vector of 1�s and

� =

0B@ �2u �2u

�2u �2u + �
2
�

1CA. Denote, � = ��0; �1; �u; �2u; �2�� and � = (Yn+1; U1; :::Un+1). Us-
ing the independence assumption we can construct the following joint likelihood

L�;� = f
�
y�n+1j�; Un+1; Xn+1

�
f (Un+1; Xn+1j�)

nY
i=1

f (yij�; Ui; Xi) f (Ui; Xij�) (12)

The second term in the right-hand-side of equation (12) is a pdf of a bivariate normal dis-

tribution. Therefore, the joint distribution of f (Ui; Xij�) in the likelihood can be factored

as

f (Ui; Xij�) = f (UijXi�) f (Xij�)

14



De�ning, E (UijXi) = 
0+
1Xi and �2 = V ar (UijXi) where, 
0 = (1� 
1)�u; 
1 =
�2u

�2u+�
2
�

and �2 = �2u

�
1� �2u

�2u+�
2
�

�
. Now, using the usual tricks for bivariate normal distribution

(see Berger and Wolpert (1988), pp�41.4) it can be shown that X = (X1; X2; :::Xn) is

ancillary for 
0; 
1; � and U . Hence, f (Xij�) carries no information about the parameters

we need for prediction. Therefore, f (Xij�) can be ignored in the construction of the

predictive likelihood. Thus the joint likelihood (12) reduces to

L�;� / exp
�
yTF � � 1T b (�)� c (yF )

� 1

�n+1
exp

"
� 1

2�2

n+1X
i=1

(ui � 
0 � 
1Xi)2
#

) L�;� / exp
�
yTF �

0 � 1T b
�
�0
�
� c (yF )

� 1

� 0n+1
exp

"
� 1

2� 02

n+1X
i=1

u02i

#
(13)

where, yTF =
�
y1; :::; yn; y

�
n+1

�
; �

0
= �

0
0 + �

0
1xi + u

0
i; �

0
0 = �0 + �1
0; �

0
1 = �1
1; �

0 = ��1

and u
0
i = �1 (ui � 
0 � 
1Xi) : We notice that equation (13) is the joint likelihood of a

Poisson-Normal mixed model. Thus we conclude that the prediction problem under the

measurement error in GLM reduces to the prediction problem with its GLMM analogue.

However, an exact analytical solution of the problem is not possible. In absence of an

exact analytical solution we can implement L(1)P through Bayesian posterior simulation.

For this problem, Huwang and Hwang (2002) suggested a pseudo likelihood (PsL) approach.

In order to compare the performance of L(1)P with PsL method we conduct a simulation

study with �0 = �1 = 1, �u = 0; �
2
u = 0:25 and �

2
� = 0:1 and 0:25. We consider the sample

sizes to be n = 30; 50; and 100 and predict one out of sample response (yn+1) based on

the observed data and Xn+1: The above choices of the parameter values and sample sizes

are made according to Huwang and Hwang (2002). The computation of the L(1)P is carried

out through Bayesian posterior simulation implemented in OpenBugs (Spigelhalter, 2007).

A �at prior, Uniform(0; 100) for � 0 and N (0; 10000) for �
0
i, i = 0; 1 ; was used for the

Bayesian model. We compare the performances of L(1)P and PsL in terms of the coverage

interval and the average length of prediction intervals for a nominal level, 0:95. We use
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1000 Monte-Carlo replication to obtain our results which are presented in Table 2.

Table 2 Coverage Probabilities and the average length of prediction intervals for the

Poisson error-in-variable prediction (Example 4) with nominal probability 0.95.

Sample Size V ar (�i) Coverage probability Length of prediction interval

n �2� L
(1)
P PsL L

(1)
P PsL

30 0.25 0.982 0.945 8.733 8.825

50 0.969 0.958 8.355 8.362

100 0.976 0.961 7.909 8.231

30 0.1 0.984 0.954 8.405 8.386

50 0.984 0.964 7.737 7.785

100 0.986 0.943 7.518 7.642

Note: The results of the PsL are quoted from Huwang and Hwang (2002)

Though the coverage probability for L(1)p exceeds the nominal level by a big margin (Table

1), it should may not be a problem of L(1)P rather it may be due to discrete predictive

distribution for which a 95% prediction interval may not be possible to construct. However,

L
(1)
p guarantees that the coverage probability is not less than the nominal level while keeps

the average length of the prediction interval shorter than that of the PsL: It is interesting

to note that, PsL coverage probability may be less than the nominal level but it is not

the case for L(1)P : The average length of the L
(1)
P decreases at a rate faster than PsL as

the sample sizes increase. In the above simulation, �2u and �
2
� are very small, in absolute

value, therefore a naive prediction implemented through a simple Poisson GLM of y on X

does not perform substantially bad. For example, with n = 30; �2u = 0:25 and �
2
� = 0:25

a 95% prediction interval of a simple GLM shows 94% coverage probability. However, as

we increase the variance parameters to �2u = 1:25 and �
2
� = 1:25 and we change �0 = 0:5

and �1 = 1:5 with n = 30 the simulation results show that the 95% prediction interval of

L
(1)
P still has 98% coverage probability while a 95% naive GLM prediction interval covers

the true future values only in 77% cases.
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The next we present an example of prediction with GLMM under covariate uncertainty with

a hypothetical model for credit risk prediction.

Example 5: Let us assume that a portfolio of loans consists of nkt loans in industry k, k =

1; 2; :::;K at time t, t = 1; 2; :::; T: The event that ith loan in industry k is default at time t

is given by yikt which takes value 1 if the loan is default and 0 otherwise. Further, assume

that the default probability is modeled with a binomial GLMM. While predicting a default

event at time t+1 having observed the information path at t some of the future covariates

are unknown. For simplicity we assume that there are p+ 1 covariates and only the value

of the last covariate, _X�
ik(T+1)(p+1) is unknown at time T while the covariate process of

Xikt(p+1) follows AR (1) :

Solution of example 5: For simplicity we assume p = 3 and that the random time e¤ects in

cluster k at each time t is distributed as ukt v N
�
0; �2k

�
, ukt ? uk0t08k 6= k0 & t 6= t0.

Denote, the future _X�
ik(T+1)(p+1) = x

� we want to predict E
�
y�ik(t+1)

�
= ��ik(t+1): A naive

approach would suggest predicting x� from the historical data on X and then predict

��ik(t+1) as though x
� is known and the other model parameters are known and are equal

to MLE obtained from the observed data up to time t. The joint likelihood in this case is

given as

l (�;y�; �jy; x) =
Z
exp

�
y�TF � � 1Tdiag fb (�)g

�
f (u) f (x�jx) f (x) dudx�

) l (�;y�; �jy; x) =
Z
exp

"X
t

X
k

 X
i

yikt�ikt � b (�ikt)
!#

1q
2��2k

exp

�
� u

2
kt

2�2k

�
f (x�jx; �) f (xj�) dudx�

where �ikt = �0 + �1x1ikt + �2x2ikt + ukt and � represents the parameter vector required

to model X. Assuming, X2ikt varies only over t an AR(1) precess on X is de�ned as

Xt+1 = �+ �Xt + et; j�j < 1 and et:~iid N
�
0; �2e

�
thus giving � =

�
�; �; �2e

�
: The above
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assumptions simpli�es the joint likelihood as

l (�; y�; �jy; x) =

Z
exp

"X
t

X
k

 X
i

yikt�ikt � b (�ikt)
!#

1q
2��2k

exp

�
� u

2
kt

2�2k

�
:

f
�
x�T+1jxT ; �

�
f (x1j�)

T+1Y
t=2

f (xtjxt�1; �) dudx� (14)

Thus, in order to estimate � parameters we only need to maximize the second line of (14).

However, unlike the formal time series prediction, we have to consider the full likelihood

(14) for the prediction of x� and not just the second line.

5 Motivations of L(1)P

We provide likelihood solution of the selected examples through pro�le adjusted predictive like-

lihood, L(1)P : However, L
(1)
P is not the the only choice to carry out likelihood prediction. Initially

L
(1)
P was motivated through its approximate equivalence of Bayesian posterior with �at prior

(Davison, 1986). In this section we show that, apart from the Bayesian justi�cation, L(1)P does

have other attractive explanations.

Bjørnstad (1990) surveyed 14 di¤erent types of predictive likelihoods. Many of them are

equivalent but not all of them comply with the likelihood principle. Bjørnstad (1996) presented

a de�nition of the proper predictive likelihood based on the likelihood principle. A predictive

likelihood L (y�jY ) is said to be proper if, given two experiments E1 and E2, L� (y; y�jE1) /

L� (y; y
�jE2) implies L (y�jy;E1) / L (y�jy;E2) : According to the above de�nition, only 5 out 14

predictive likelihoods surveyed in Bjørnstad (1990) qualify as the proper predictive likelihoods.

Denoting b� as the MLE of � based on observed data only and b�� as the MLE of � based on
both observed and unobserved data the proper predictive likelihoods are given as

1. Le = L
�
y�jy;� = b�y� where, . Le is called the estimative likelihood.

2. LP = L
�
y�jy;� = b��� where, . LP is called the pro�le likelihood.

3. L
(1)
P = L

�
y�jy;� = b��� jI� �b��� j�1=2 where, I� = �@2 log(L�(z;y))

@�@�T
j
�=b�� which is called

pro�le adjusted predictive likelihood.
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4. L(2)P = L
(1)
P




 @b�
@b��



 which is a transformation invariant version of L(1)P :

5. L(3)P = sup�

n
L�(y;y

�)
supy�ff�(y�jy)g

o
Bjørnstad (1996) did not o¤er any discussion as to whether all of the above 5 predictive like-

lihoods are equally as good. However, a careful inspection of the above 5 predictive likelihoods

reveals that all of them are based on the joint likelihood and they di¤er only in the way they

pro�le the nuisance parameters out of the joint likelihood. Like the naive approach, Le does

not take into account the fact that the parameter b�y is estimated. Hence, Le undermines the
uncertainty associated with the prediction. LP can be recognized as the �rst order Taylor�s ap-

proximation to the joint likelihood around � = b�� while the second order Taylor�s approximation
to log(L� (y; y�)) around b�� gives

L� (y; z) � L
�
zjy;� = b��� exp ��� � b���T I� �b����� � b����

Assuming normality of b�� i.e. g �b��j�� = N ��;�I� �b�����1� we have

L� (y; y
�) �

L
�
y�jy;� = b��� exp ��� � b���T I� �b����� � b����

g
�b��j�� g

�b��j��

) L� (y; y
�) � L

�
y�jy;� = b�z� jI� �b��� j�1=2g �b��j�� (15)

From (15), we see that

L� (y; y
�) � L(1)P g

�b��j��
where L(1)P contains information only on y� and g

�b��j�� contains all the information on � in
addition to partial information on y�. Therefore, the amount of information on y� contained in

g
�b��j�� is likely to be small compared to that contained in L(1)P and may be negligible. Under

the above, assumption, L(1)P is also the partial likelihood of y�. Again, L� (y; y�) = f (y; y�j�) and

f
�
y; y�;b�j�� = f (y; y�j�) implies that L(1)P is the approximate conditional distribution of y and

y� given � = b�� i.e., L(1)P � f
�
y; y�j� = b���. Thus, L(1)P does not have to be motivated through

the Bayesian argument rather it has its own frequentist interpretation which is missing for the
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other proper predictive likelihoods. L(2)P is applicable only if b�� can be expressed as a function ofb� which is not possible while we need to use numerical method to obtain the maximum likelihood
estimator. L(3)P is also a �rst order Taylor�s approximation around a di¤erent estimate of � thanb�y and b��:
6 Concluding discussion

This paper demonstrate that the likelihood principle gives us a uni�ed analytic framework for

predictive inference. For a particular problem in hand, one might be able to �nd a technique e.g.

BLUP for linear models, which enjoy some nice frequentist properties however, a generalization

of those techniques may not always be possible. While, pro�le predictive likelihood method

provides a general and uni�ed principle and method. The exact computation of the pro�le

likelihood may be problematic. Moreover, the lack of computational procedures for pro�le

predictive likelihood is also a hindrance in implementation. We leave the last two issues for

possible future work.

Though there are many predictive likelihoods in the literature we prefer pro�le adjusted pre-

dictive likelihood, L(1)P ; for the following reasons. First, it has nice frequentist explanation (see

section 5) and second, due to its equivalence of Bayesian posterior distribution (Davison, 1986),

the computation of it can be carried out by using existing Bayesian computational procedures

such as by using WinBugs. For a Poisson error-in-variable GLM (example 4), we carry out pre-

dictive inference through Bayesian posterior simulation by using OpenBugs. Simulation results

show that L(1)P performs better than the pseudo likelihood approach and the naive approach.
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