
Abstract

An added variable plot is a commonly used plot in linear regression diagnos-
tics. The plot provides information about the addition of a further regressor
to the model. The plot can lead to the identi�cation of nonlinearity in the
selected regressor, and outliers and in�uential observations that may seri-
ously impact the least-squares estimate of the parameter that corresponds
to the selected regressor. In this paper added variable plots are derived for a
nonlinear regression model with an additive error term. The added variable
plot for this nonlinear regression model is di¤erent from the plot in the linear
regression case. The plot is not created for a speci�c explanatory variable,
but for a parameter. Thus, the plot can be called an added parameter plot,
since it provides information about the modi�cation of the model by adding
a parameter. The plot also gives a more formal tool to decide the impor-
tance of the parameter, since it is closely connected to the score test of the
null-hypothesis that the added parameter is zero. It is proved that the value
of the score test statistic is equal to SSR of the regression through the origin
in the added parameter plot, divided by the estimated variance under the
null hypothesis.
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1 Introduction

Model selection including sensitivity analysis is always an important part of
the data analysis, and the problem of deciding which model is more appro-
priate for a given set of data is a problem with no simple solution. If there
are scienti�c reasons for preferring one model over the others, strong weight
should be given to the researcher�s reason. However, if there still are various
models to consider one might need some kind of diagnostic aid.

In this paper, one such aid is presented - the Added variable plot. One
application of this plot is to provide information to help decide whether an
additional candidate variable should be included into a model. In addition,
the plot is also used for detecting high leverage points and in�uential data.

The added variable plot is a plot of two sets of residuals. In the case
of a linear regression model, the �rst set of residuals consists of those from
the regression where the response variable is regressed on all explanatory
variables, except for the variable under consideration. The second set of
residuals is computed from regressing the variable under consideration on
all the other explanatory variables. The general scatter of the points gives
an overall impression of the strength of the relationship. A stronger linear
relationship indicates the need for the inclusion of the considered variable
as an explanatory variable in the model. In fact, the added variable plot
will show the correct strength of the linear relationship between the response
variable and the added explanatory variable when the other regressors are
present in the model.

The plot helps detecting leverage (potentially in�uential) points and in-
�uential points that might not be leverage points. Individual points that are
well separated from the rest of the data give heuristic information about the
e¤ects of outlying points on individual coe¢ cients, and may suggest cases for
special study. Belsley et al. (1980) give several examples illustrating the use
of these plots for detecting in�uential observations. Added variable plots for
the linear regression model have also been discussed by, for example, Cook
and Weisberg (1982), Chatterjee and Hadi (1988), Ryan (1997) and Imon
(2003).

Added variable plots can also be applied to nonlinear models. One exam-
ple is the Cox�s regression model discussed by Lindkvist (2000). The purpose
of this article is to show how an added variable plot can be created for the
nonlinear regression model with an additive error term. For such a model

2



there is not always an one-to-one correspondence between the parameters
and the variables. As a result, the variables used to construct an added
variable plot are not explanatory variables in the same sense as in the linear
regression model. Here, the variable in mind is a constructed variable. This
variable is constructed by taking the derivative of the response function with
respect to the parameter of interest. An added variable plot in the nonlinear
regression case is therefore created only for parameters and the added vari-
able plot for the nonlinear regression model will from now on be referred to
as the added parameter plot.
For a discussion of other graphical diagnostics in nonlinear regression,

see the article by Cook (1987). He proposes graphical methods for display-
ing relevant information on a selected parameter from a normal nonlinear
regression model. In the article by Cook, as in this paper, the linear exten-
sion of the nonlinear model is used to create a parameter plot. However, the
plot discussed by Cook is slightly di¤erent from what is presented in this
paper, since he is using another set of residuals as dependent variables in
the plot. In his article, Cook points out that this plot may fail in revealing
important information when the linear approximation is inadequate.

This article also discusses how the score test is connected to the added
parameter plot. It is shown, in addition to carrying out the score test through
the likelihood function, that the value of the score test statistic can be found
in the estimated model for the added parameter plot. This gives the advan-
tage that the added parameter plot can not only graphically tell us if the
additional parameter should be included, but also gives a value of a formal
test statistic. Further, the added parameter plot can be used to investigate
which observations are in�uencing the score test.

It is also shown in this paper that the added parameter plot for the
nonlinear case has properties similar to the added variable plot for the linear
case, properties that are useful when conducting the score test via the added
parameter plot. These properties are identi�ed and proved in the paper.

To create an added parameter plot and to perform the score test for the
nonlinear regression model with an additive error term, it is �rst necessary
to estimate the model, using some numerical search procedure. The proce-
dure used here is the Gauss-Newton method. A thorough description of the
Gauss-Newton method is given by e.g. Neter et al. (1996). This procedure
results in a matrix with values of the derivatives of the response function with
respect to the parameters. These derivatives act as constructed explanatory
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variables used in the added parameter plot. The constructed variables are
also used when performing the score test. Together with the score test, de-
tailed examples of other large-sample tests about the parameters in nonlinear
regression with an additive error term are given by Gallant (1987).

In section 2 the nonlinear model is presented. A short presentation of
the Gauss-Newton method is given and the score test is outlined. Added
parameter plots in nonlinear regression is discussed in section 3 together
with the properties of the plot and proofs. A numerical example is presented
in section 4. The example illustrates some of the properties and a score test
is conducted. The last section contains concluding remarks.

2 The nonlinear model

The model considered is the nonlinear regression model with an additive
error term

y = f(x;�) + "; (1)

where x represents a n � p�matrix with p known explanatory variables. y
is a n�vector of responses and � is a q�vector of unknown parameters. The
errors are assumed to be independent, identically distributed normal random
variables with mean 0 and variance �2. The function f is assumed to be twice
continuously di¤erentiable in �.
For this nonlinear model there is not necessarily a one-to-one correspon-

dence between parameters and variables, thus it is seldom the case that p = q.
An example of a model where q 6= p is the Michaelis-Menten model

y =
�1x

�2 + x
+ "; (2)

where p = 1 and q = 2.

2.1 Estimation

Estimation of nonlinear models involves an iterative numerical search proce-

dure that minimizes the residual sum of squares, SSE(�) =
nP
i=1

(yi�f(xi;�))2.
One technique that can be used to accomplish this is the Gauss-Newton
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method. This entails using a Taylor series expansion of f(xi;�) about an
initial parameter vector, denoted �(0), using only the �rst term in the expan-
sion.

f(xi;�) � f(xi;�(0)) +
qP
j=1

�
� � �(0)j

� @

@�j
f(xi;�) j�=�(0) : (3)

This yields a linear model in which � is estimated using least squares. The
initial value, �(0), is then replaced by the convergence. Assuming that con-
vergence occurs at the k-th iteration and rewriting (3) gives the �nal linear
approximation of the model

y
(k)
i = yi � f(xi;�(k)) =

qP
j=1

�
� � �(k)j

� @

@�j
f(xi;�) j�=�(k) : (4)

According to Charnes et al.(1976) �(k) is identical to the maximum like-
lihood estimator of �.

2.2 The score test

Exact inference procedures about the regression parameters are available for
linear regression models with normal error terms for any sample size. Un-
fortunately, this is not the case for non-linear regression models with normal
errors, where the least squares and maximum likelihood estimators for any
given sample size are not guaranteed to be normally distributed, are not
unbiased and do not have minimum variance. Consequently, inferences are
usually based on large-sample theory (see e.g. Neter, Kutner, Nachtsheim &
Wasserman (1996)).

One large-sample test in common use is the score test (or Lagrange multi-
plier test). This test uses the score function, which is the partial derivative of
the log likelihood function, with respect to the parameters, �. For normally
distributed y�s the log likelihood function is de�ned as

` = �n
2
ln(2�2�)� 1

2�2

nP
i=1

[yi � f(xi; �)]2 :

The score function, U , is a q� vector of scores

U(�) =

�
d`

d�1
;
d`

d�2
; :::;

d`

d�q

�T
:
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Asymptotically, U(�) is N(0; I(�)) under some regularity assumptions (see
for example Fahrmeir & Tutz (2001)), where I(�) is the information matrix
for �, de�ned as

I(�) = E
�
U(�)U(�)T

�
:

For some hypothesized value, �0, the test statistic for the score test is

S(�0) = U(�0)
T [I(�0)]

�1 U(�0):

The score statistic, S, will asymptotically have a �2�distribution, with the
number of restrictions under the null hypothesis as the number of degrees of
freedom (Buse (1982)).

In order to test if a parameter is signi�cant the score test can be used.
Assume that � is a (q + 1)�vector,

�
�1 �2 � � � �q+1

�T
. To conduct the

score test of H0 : �q+1 = 0, the model is �rst estimated under H0, yielding

the estimate e� = h e�1 e�2 � � � e�q 0
iT
. Next, the vector e� is used as

starting value for a single iteration with the Gauss-Newton algorithm for the
(q+ 1)�parameter model. This iteration gives a n� (q+ 1) matrix, F, with
the ith row

Fi =
@

@�
f(xi;�) j�=e� :

The matrix F is assumed to have full column rank.

Let f(e�) denote the n�vector with elements f(xi; e�), i = 1; :::; n, and y
is the n�vector with responses. Then the test statistic for the score test of
H0 : �q+1 = 0 may then be written as

S(e�) = U(e�)T hI(e�)i�1 U(e�):
U(e�) = 1

�2
FT
�
y � f(e�)� and I(e�) = 1

�2
FTF. Thus S(e�) can be written

S(e�) = 1

�2

�
y � f(e�)�T F �FTF��1FT �y � f(e�)� : (5)

Since �2 is unknown, it is estimated with s2 =MSE under the null hypoth-
esis.
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3 Added parameter plot

There are various diagnostic plots in regression analysis. One such plot is the
added variable plot, that is used to study the e¤ect of an additional explana-
tory variable in a regression model. Consider a linear regression model with
regressors X1; :::; Xp. An added variable plot for regressor Xp is constructed
as follows. The residuals that result from regressing y on X1; :::; Xp�1, are
computed, as are the residuals that result from regressing Xp on X1; :::; Xp�1.
The added variable plot is de�ned as the scatter plot of the �rst set of resid-
uals against the second set.

In linear regression there is a one-to-one correspondence between the pa-
rameters and the variables. In nonlinear regression this is not always the
case. As a result, the variables used to construct an added variable plot
are not explanatory variables in the same sense as in the linear regression
case. Here, the variable in mind is a constructed variable. This variable is
constructed by taking the derivative of the response function with respect to
the parameter of interest. An added variable plot in the nonlinear regression
case is therefore created only for parameters.

Using the notation in section 3, an added parameter plot for the con-
structed variable, @

@�q+1
f(xi;�) j�=e�, corresponding to the parameter �q+1,

can be created. This plot examines the e¤ect of modifying the q-parameter
model by adding the parameter �q+1 to the regression. Consider partition-
ing the matrix, F, de�ned above, so that F = [F1; F2] : Now, F1 contains
the �rst q columns of F and F2 contains the last column of F correspond-
ing to the parameter of interest, �q+1. Also, de�ne the projection matrices
PF = F(F

TF)�1FT and PF1 and PF2 in the same manner.
The added parameter plot for �q+1 is a plot of

y� = (I�PF1)y versus x� = (I�PF1)F2: (6)

Here y� is the vector of residuals when estimating the model without �q+1,
and x� is the vector of residuals from the least-squares regression of F2 on
F1. In the regression through the origin of y� on x�, Px� is de�ned as
x�(x�Tx�)�1x�T .
The resulting plot has the following properties.

Property 1 The least squares estimate b�, of the slope �, in the simple
linear regression through the origin in the added variable plot (6), is equal
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to the updated parameter estimate b�q+1 in the model after one iteration of
the Gauss-Newton algorithm when e� is used as starting value.
Proof The least squares estimate of the slope � is

b� = (x�Tx�)�1x�Ty�

=
�
FT2F2 � FT2PF1F2

��1
FT2 (I�PF1)y:

Consider the linearized model (4) and use F as the independent variable and
the residuals under H0 as the dependent variable, the starting values with
the Gauss-Newton algorithm can be revised.

�(1) = �(0) +
�
FTF

��1 � �FT �� hy � f(X;�(0))i :
Using e� as starting value, the partition of F yields

�(1) = e� + � FT1F1 FT1F2
FT2F1 FT2F2

��1
�
�
FT1
FT2

�
�
h
f(e�)i :

The estimate of �q+1 is obtained as�
FT2F2 � FT2PF1F2

��1
FT2 (I�PF1)y;

where f(e�) is replaced by (I � PF1)y since both is an expression for the
residuals under the null hypothesis. �
Property 2 The projection matrix Px� for the regression through the

origin in the added variable plot (5) is equal to PF �PF1.
Proof The projection matrix in the added variable plot is

Px� = (I�PF1)F2
�
FT2 (I�PF1)F2

��1
FT2 (I�PF1)

=
eF2�F1e

T
F2�F1

eTF2�F1eF2�F1
;

where eF2�F1 is the residual vector when F2 is regressed on F1. Since F is a
partitioned matrix, PF can be decomposed into a sum of projection matrices
(Chatterjee & Hadi (1988)),

PF = P1 +P2;
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and PF can be written

PF = PF1 + (I�PF1)F2
�
FT2 (I�PF1)F2

��1
FT2 (I�PF1)

= PF1 +
eF2�F1e

T
F2�F1

eTF2�F1eF2�F1
) PF �PF1 = Px� �

The matrixP can also be referred to as the weight- or the leverage matrix,
whose diagonal elements are termed as leverages. In�uential observations are
those whose presence or absence can make a huge impact on the �tting of the
model and hence the resulting analyses. Observations possessing excessively
large values on the diagonal of P are termed as high leverage points and
are potentially in�uential. The leverages in Px� tells us about the in�uence
on the parameter estimate for the additional variable, given that all other
variables are included in the regression.

Property 3 The residual vector, ey��x�, for the regression through the
origin in the added variable plot is (I � PF )y, that is the residuals when y
is regressed on F.

Proof The residuals are

ey��x�=(I�Px�)y�:

Using property 2 and

(I�Px�)y� = (I�Px�)(I�PF1)y
= (I�PF +PF1)(I�PF1)y
= I�PF +PF1 �PF1 +PFPF1 �PF1
= (I�PF )y;

The PF1 terms on line 3 is cancelled out because PFF1 = F1 and thus
PFPF1 = PF1. �
Property 3 states that the residual vector, ey��x�, is the same whichever

variable in the model we are examining in the added variable plot (Cook &
Weisberg (1982)).

Property 4 SSR in the regression for the added variable plot, divided
by MSE from the model not including �q+1, equals the test statistic for the
score test of

H0 : �q+1 = 0
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Proof SSR in the added variable plot regression is y�TPx�y�.

SSR = y�TPx�y
�

= [(I�PF1)y]
T Px� [(I�PF1)y]

using property 2

= yT (I�PF1) [PF �PF1 ] (I�PF1)y
= yT [PF �PF1 �PF1PF +PF1 ] (I�PF1)y

using property 3

= yT (PF �PF1) (I�PF1)y
= yT (I�PF1)PF (I�PF1)y:

(I�PF1)y is the residuals under the null and thus, y�TPx�y� can be written�
y � f(e�)�T F �FTF��1FT �y � f(e�)� :

Thus, y�TPx�y� / S(e�) in (5). This result makes it easy to compute the test
statistic of the score test. �

4 Example

The Michaelis-Menten model, (2), presented in Bates and Watts (1988), for
enzyme kinetics relates the initial "velocity" of an enzymatic reaction to the
substrate concentration, x, through the equation

f(x; �) =
�1x

�2 + x
:

�1 is the asymptotic velocity of the enzymatic reaction and graphically repre-
sents the asymptotic value of f as x!1: �2 represent the half-concentration,
i.e. the value of x such that when the concentration reaches that value the
velocity is one-half its ultimate value.
In the example presented in Baytes and Watts (1988), two blocks of ex-

periments were run. In one block the enzyme was treated with puromycin,
and in the other the enzyme was untreated. It was hypothesized that the
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Puromycin should a¤ect the maximum velocity parameter �1, but not the
half-velocity parameter �2. An indicator variable, x2 was introduced.

f(x; �) =
(�1 + �1x2)x1
�2 + x1

;

The model (2) is thus modi�ed, now including �1 to account for the e¤ect of
puromycin on the asymptotic velocity, �1.
The second modi�cation of model (2) includes �1 as well as �2, a para-

meter for potential e¤ect of puromycin on "half-concentration":

f(x; �) =
(� + �1x2)x1
(�2 + �2x2) + x1

;

The score test can now be used to test if the model should include di¤erent
half-velocity parameters depending on wether the enzyme is treated or not.
That is, the hypothesis:

H0 : �2 = 0 (7)

HA : �2 6= 0:

Together with the test an added parameter plot for �2 can be created.

To conduct the score test the parameter vector must be de�ned. Let

� =

2664
�1
�2
�1
�2

3775 :
Now the model under the null hypothesis is estimated to retrieve the starting
values and MSE. These estimates are:

e� =
2664
166:6041
0:0580
42:0260
0

3775 ; (8)

and

MSE = 112:05
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respectively. e� is now used as starting values for a single iteration of the
Gauss-Newton method to retrieve the matrix of F. After this iteration, we
see that the updated estimates of � is

b�(1) =
2664
160:8924
0:0485
51:2969
0:0148

3775 (9)

When s2 =MSE = 112:05 is used as an estimate of �2, the value of the test

statistic is

S = 1:4483;

where S has 1 degree of freedom. The p-value for this test is 0:2280 and
the null hypothesis that the half-velocity parameter is unchanged by the
puromycin treatment cannot be rejected.

We can compare this result with the result from another large-sample
test. The three-parameter model and the four-parameter model is compared
in Bates and Watts (1988). The hypothesis (7) is tested with the likelihood
ratio test. This test gives a value of the test statistic of 1:7, which has a
corresponding p-value of 0:21. The p-value is close to 0:2280 and according
to this result there is not enough evidence to reject the null hypothesis. The
likelihood ratio test requires both the restricted and the unrestricted esti-
mates of the parameter, therefore the likelihood ratio test is computational
more demanding.
Both theses test statistics has an asymptotic �2�distribution. The dis-

tribution will approach the �2�distribution as the number of observations
gets larger. In this example the number of observations is 23, which might
be too small.

To visualize the score test an added parameter plot for �2 is created. In
the plot, the columns of F acts as independent variables. Here, the �rst three
columns of F form the matrix F1 and the last column form the vector F2.
First, y� is constructed as the residuals in the regression when y is regressed
on F1. Second, x� is constructed as the residuals when F2 is regressed on F1.
Now, y� is regressed on x�, and an added parameter plot for �2 is constructed.
The results are displayed in Figure 1.
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Added parameter plot of �2

The estimated slope in the regression of y� on x�, as shown in Figure 1, is
0:0148 which equals the parameter estimate of �2 in (9) after one iteration
with the Gauss-Newton method. This illustrates property 1. According to
property 4, the value of the score test statistic can be found by dividing SSR
in the regression for the added variable plot with MSE from the restricted
model. SSR for the added variable plot equals 162:2754. The value of the
test statistic is thus

S =
162:2754

112:05
= 1:4483;

which equals the value of the score test statistic.

5 Discussion

In this article the added variable plot for the nonlinear regression model with
an additive error term is created. It is shown that the plot is not created in the
same manner as the added variable plot for the linear regression model. In the
nonlinear regression model, there is not always a one-to-one correspondence
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between variables and parameters. The plot cannot be created for a variable
that does not correspond to a parameter, and therefore the added variable
plot can be interpreted as an added parameter plot. However, it is shown
that some properties of the plot in the linear case can be applied to the
nonlinear case. One useful property of the added variable plot, and the added
parameter plot, is that the score test can be easily carried out. The value
of the score test statistic of the null-hypothesis that the added parameter
is zero, can be found in the estimated model of the added parameter plot.
The sum of squares due to regression in the estimated model of the added
parameter plot, divided with s2 - the estimated variance of the restricted
model, is the value of the test statistic. Thus, a strong linear relationship
between the two sets of residuals in the plot suggests high SSR. With the
value of the variance held constant, this would lead to a high value of the
test statistic, and to a rejection of the null-hypothesis.

The added variable plot gives not only a visual overview of the importance
of an additional parameter. The plot can also visualize which individual
observations that contributes to a high, or low, SSR. That is, the plot may
indicate which observations seem to be in�uencing for the score test.

Further studies can be done to derive the empirical in�uence function,
EIC, of the score test statistic.
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