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Abstract

The statistical literature contain several proposals for methods gen-
erating fixed size without replacement πps sampling designs. Methods
for strict πps designs have rarely been used due to difficulties with im-
plementation. Recently a new method was proposed; the 2Pπps design
using a two-phase approach. It was shown that the first-order inclusion
probabilities of the 2Pπ design are asymptotically equal to the target
inclusion probabilities of a strict πps design.

This paper extends the work on the 2Pπps design and presents
algorithms for calculation of exact first- and second-order inclusion
probabilities. Starting from a probability mass function (pmf) of the
sum of N independent, but not equally distributed Bernoulli variables,
the algorithms are based on derived expressions for the pmfs of sums
of N − 1 and N − 2 variables, respectively.

Exact inclusion probabilities facilitate standard-based inference and
provide a tool for studying the properties of the 2Pπps design. Fur-
thermore, empirical results presented show that the properties of the
suggested point estimator can be improved using a more general 2Pπps
design. In addition, the frequently used Conditional Poisson sampling
design is shown to be a special case of this more general 2Pπps design.

1 Introduction

The precision of a sample survey could be increased by using an effective
sampling design. One way would be by selecting the population elements
into the sample with inclusion probabilities proportional to the variable(s)
of interest. However, if that would be possible, there would be no need of
a survey since all relevant information would already exist. On the other
hand, elements could be selected with probability proportional to some size
variable, or function of such, in shape of auxiliary information if such exists,
supposed to covary positively with the variable(s) of interest. Such without
replacement (WOR) designs with fixed size are called strict πps designs.
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Several methods to generate πps designs has been proposed in the statistical
literature. See Brewer & Hanif (1983) for an overview and Tillé (2006) for
more on both old and more recent πps designs.

In practise strict πps designs have rarely been used, due to difficulties
with the implementation. Instead approximative πps designs as the Pareto
πps (PAR) and the Conditional Poisson (CPS) have been used, see Rosén
(1997a,b) and Hájek (1964) respectively. However, there exists fast and fairly
simple implementations of strict πps designs such as the design presented
by Sampford (1967), see Grafström (2009).

Laitila & Olofsson (2010) presented an easily implemented sampling design,
the 2Pπps design, based on a two-phase approach yielding a sample of fixed
size n proposed to generate a πps sample. It was shown that the first-
order inclusion probabilities of the 2Pπps design attain the target inclusion
probabilities of a strict πps design asymptotically.

The design was not proposed to replace any of those already existing πps
designs. It should rather be seen as an alternative with a simple implemen-
tation as its main advantage. A simple implementation of survey designs
should not be underestimated since e.g. situations where the frame is not
accessible to the statistician him- or herself and the implementation of the
design has to be communicated to non- statisticians, are likely to be encoun-
tered when working in the field of sample surveys.

In this paper a generalisation of the sampling scheme proposed by Laitila &
Olofsson (2010) is presented. When the scheme is used with a Poisson (PO)
design as the initial design in first phase, the corresponding sampling design
is the 2Pπps design with the Conditional Poisson sampling (CPS) design
suggested by Hájek (1964) as a special case.

Algorithms for calculating exact first- and second-order inclusion probabil-
ities of the corresponding design to the presented scheme are derived and
presented. This facilitates three different ways of inference; by treating the
sample as a true πps sample, by classical two-phase theory or by standard
design-based theory, and means for evaluating the proposed design.

2 A Two-phase Sampling Scheme

Neyman (1938) introduced the two-phase (2P), or double (DBL), sampling
design as a way of gather information in the first phase necessary for a strat-
ification in the second phase. General formulae for variances and variance
estimators, irrespective of sampling designs in each phase, was derived by
Särndal & Swensson (1987).

A 2P sampling design can be used in different settings. It can e.g. be used
as a way of handling nonresponse; an idea developed by Hansen & Hurwitz
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(1946). See also Särndal, Swensson & Wretman (1992, chap. 15), from which
the notation here is adopted.

Consider a population U = {1, 2, . . . , N} of N elements and let the value of
the variable of interest for element k be denoted by yk. For sample gener-
ation, let n be the predetermined sample size and assume target inclusion
probabilities, λk, to be proportional to a size variable xk known for all k ∈ U .
The sampling scheme is as follows:

1. Draw a sample, s0, using a without-replacement (WOR) design with
Pr(k ∈ S0) = λak, such that

∑N
k=1 λak = m > 0.

2. If n ≤ ns0
≤ M , M ≤ N , then let sa = s0 and proceed to step 3. If

not, repeat step 1.

3. From the sampled set, sa, draw a sample s of size n using a simple
random sampling WOR (SI) design.

Remark. Let {si
0}

∞
i=1 be an infinite sequence of independent initial samples

using any WOR design with Pr(k ∈ Si
0) = λak, such that

∑N
k=1 λak = m > 0,

then the first phase sample sa = sτ
0, where τ = min(i : n ≤ |si

0| ≤M).

Remark. A sufficient condition for eventually reaching the third step of the
scheme is that Pr(n ≤ |S0| ≤M) > 0. Denote this probability with β and let
T denote the number of trials before a sample of sufficient size is obtained,
then T ∼ Geo(p) and E(T ) = 1/β and V(T ) = (1 − β)/β2.

A sample s obtained from a sampling scheme can be interpreted as the
outcome of a set-valued random variable S, where its probability function,
Pr(S = s) = p(s), defines the sampling design generated by the sampling
scheme. Furthermore, let ϕ denote the set of all possible samples s such
that its cardinality is n, i.e. ϕ = {s : |s| = n, s ⊆ U}. Given a first phase
sample sa, the probability of selecting a particular subsample s (of size n)

in the second phase equals
(|sa|

n

)−1
. Let Ωs = {sa : s ⊆ sa ⊆ U, |sa| ≤ M}.

The general sampling design corresponding to the sampling scheme above is
then given by

p(s) =
∑

sa∈Ωs

pa(sa)

(

|sa|

n

)−1

(1)

where pa(sa) = Pr(Sa = sa) is the sampling design used to generate the first
phase sample sa.

The probability of getting a given sample s using the scheme is dependent,
not only on the initial used WOR design but also on the predetermined sam-
ple size n and on the constant M . This latter constant should be interpreted
as an upper limit of the size of the first phase sample in order to decrease
its variation if a non-fixed sampling design is used initially.
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The probability of element k belonging to the sample S is given by the sam-
pling design, i.e. πk = Pr(k ∈ S) =

∑

s3k p(s), where s 3 k denote the set
{s : s ∈ ϕ, k ∈ s}. Although it is possible to calculate the inclusion prob-
abilities by using the probability design it is not always feasible in practise
since cardinality of ϕ will be huge if the population size is large. Fortunately
it is possible to derive the expressions analytically.

The first-order inclusion probabilities of the general sampling design corre-
sponding to the scheme above are given by

πk = Pr(k ∈ S|k ∈ Sa) Pr(k ∈ Sa) k ∈ U, (2)

and the second-order inclusion probabilities by

πkl = Pr(k, l ∈ S|k, l ∈ Sa) Pr(k, l ∈ Sa) {k, l} ⊂ U, k 6= l. (3)

3 The 2Pπps design

In Section 2 a general two-phase scheme was proposed. If a PO design with
λak ∝ xk and expected sample size m = b

∑

Uxk/max{xk}
N
k=1c is used to

draw the initial sample in the first phase andM = N , then the corresponding
sampling design of the scheme is the 2Pπps sampling design proposed by
Laitila & Olofsson (2010). The design was proposed to generate, in an easy
way, a sample s of fixed size n with inclusion probabilities proportional to
size.

If a PO design is used in the first phase of the sampling scheme presented
above the probability function of the corresponding scheme is given by

p2Pπps(s) = c2Pπps

∑

sa∈Ωs

∏

k∈sa

λak

∏

k∈sc

a

(1 − λak)

(

|sa|

n

)−1

(4)

where c2Pπps = 1/Pr(n ≤ |S0| ≤ M), i.e. the reciprocal of the probability
of accepting the initial PO sample as a first phase sample.

It is suggested to use the proposed design to, in an easy way, generate a πps
sample.

Remark. Although Laitila & Olofsson (2010) used as expected initial sample
size m = b

∑

Uxk/max{xk}
N
k=1c and as upper bound of sample size M = N

as parameters and here other values, 0 < M ≤ N and 0 < m ≤ N , are
allowed the design given by (4) will henceforth be called the 2Pπps sampling
design.

Remark. It should be noted that if n = M ≤ N all the units in the first
phase sample are selected with probability one in the second phase of the
2Pπps design. Furthermore, in case that n = m = M the 2Pπps design is
identical with the CPS design suggested by Hájek (1964).
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Before continuing, define the membership indicator of the initial sample as

Iak =

{

1 if k ∈ S0

0 if k ∈ Sc
0

, k ∈ U (5)

and let nS0
=
∑

UIak.

Lemma 1. Assume a sampling scheme as defined in Section 2 and let the
initial design in the first phase be a PO design with Pr(Iak = 1) = λak such
that

∑

Uλak = m. Furthermore, let the random event {b ≤ |S0 \ D| ≤ e}
be denoted by Ce

b (D), where D ⊆ U or D = ∅, then

Pr(k ∈ Sa) = λak

Pr(CM−1
n−1 (k))

Pr(CM
n (∅))

, k ∈ U (6)

and

Pr(k, l ∈ Sa) = λakλal

Pr(CM−2
n−2 (k, l))

Pr(CM
n (∅))

, {k, l} ⊂ U, k 6= l (7)

are the first- and second-order inclusion probabilities, respectively, of the first
phase of the 2Pπps design.

Proof. Only (6) will be proved since the proof of (7) is similar. First, let
{si

0}
∞
i=1 be an infinite sequence of independent samples using a PO design

with Pr(Iak = 1) = λak and let sa = sτ
0, where τ = min(i : n ≤ |si

0| ≤ M),
then

Pr(k ∈ Sa) = Pr(k ∈ S0|C
M
n (∅))

=
Pr(Iak = 1, CM

n (∅))

Pr(CM
n (∅))

=
Pr(Iak = 1, CM−1

n−1 (k))

Pr(CM
n (∅))

,

= λak

Pr(CM−1
n−1 (k))

Pr(CM
n (∅))

.

by the definition of conditional probabilities and the fact that the Iak’s are
independent.

Lemma 1 gives the second factor of πk and πkl, given by (2) and (3), respec-
tively. In order to derive the first factor remember that the probability of
getting a sample s of size n from the realised first phase sample sa of size

nsa
is given by

(|sa|
n

)−1
. Furthermore, from the sampling scheme proposed

it is known that n ≤ |Sa| ≤M .
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Lemma 2. Let the prerequisites be as in Lemma 1 then

Pr(k ∈ S|k ∈ Sa) =

M
∑

i=n

n

i

Pr(n−k
S0

= i− 1)

Pr(CM−1
n−1 (k))

, k ∈ U (8)

where n−k
S0

= |S0 \ {k}|, and

Pr(k, l ⊂ S|k, l ⊂ Sa) =

M
∑

i=n

n(n− 1)

i(i− 1)

Pr(n−k,l
S0

= i− 2)

Pr(CM−2
n−2 ({k, l}))

(9)

where n−k,l
S0

= |S0 \{k, l}|, are the first- and second-order inclusion probabil-
ities, respectively, in the second phase of the 2Pπps design.

Proof. Only (8) will be proved, since the proof of (9) is similar. First, let
nSa

= |Sa|, then

Pr(k ∈ S|k ∈ Sa) = Epa

(

n

nSa

|k ∈ Sa

)

= Epa

(

n

n−k
Sa

+ 1
|CM−1

n−1 (k)

)

=
M−1
∑

j=n−1

n

j + 1

Pr(n−k
S0

= j)

Pr(CM−1
n−1 (k))

=

M
∑

i=n

n

i

Pr(n−k
S0

= i− 1)

Pr(CM−1
n−1 (k))

Now, it is possible to state the first- and second-order inclusion probabilities
jointly over the the two phases of the 2Pπps design.

Theorem 1. Let the prerequisites be as in Lemma 1 then

πk = λak

∑M
i=n

n
i
Pr(n−k

S0
= i− 1)

Pr(CM
n (∅))

(10)

where n−k
S0

= |S0 \ {k}|, and

πkl = λakλal

∑M
i=1

n(n−1)
i(i−1) Pr(n−k,l

S0
= i− 2)

Pr(CM
n (∅))

(11)

where n−k,l
S0

= |S0 \{k, l}|, are the first- and second-order inclusion probabil-
ities, respectively, of the 2Pπps design.
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Proof. First, let {si
0}

∞
i=1 be an infinite sequence of independent initial PO

samples and sa = sτ
0 , where τ = min{i : n ≤ |si

0| ≤M}, then

πk = Pr(k ∈ S)

= Pr(k ∈ S|k ∈ Sa) Pr(k ∈ Sa)

= Pr(k ∈ S|k ∈ Sa) Pr(k ∈ S0|C
M
n (∅)) (12)

by the law of total probability and the definition of conditional probability.
By applying the first part of Lemma 1 and Lemma 2, respectively, to (12)
the result is obtained.

The proof of (11) is similar.

Remark. Expressions for the third- and fourth-order inclusion probabilities
obtained from the 2Pπps sampling design can be found in Appendix A. The
proofs are similar to that of πk.

4 Algorithms to find the pmf for the sum of inde-

pendent Bernoulli distributed random variables

In many situations independent trials with a dichotomous outcome are en-
countered. Such cases could be seen as Bernoulli trials with a common
probability of success, say δ, or trial specific, i.e. δk. Define an indicator
function

Ik =

{

1 if the kth trial is a success

0 otherwise
k = 1, . . . , N (13)

and let Z =
∑N

k=1 Ik denote the number of successes out of N trials.

It is well known that Z ∼ Bin(N, δ) if Pr(Ik = 1) = δ for all k. If, on the
other hand, the probability of success is unequal between trials the probabil-
ity mass function (pmf) of Z is not possible to write down in a closed-form
expression. However, it is possible to compute the pmf recursively, see also
e.g. Chen, Dempster & Liu (1994), Aires (1999) and Bondesson, Traat &
Lundquist (2006) for similar result.

Lemma 3. Let U = {1, 2, . . . , N} and Ω = {k : Ik = 1, k ∈ U}. Fur-

thermore, let Ωi = {Ω : |Ω| = i}. In addition, let P
N−|D|
i (D) denote the

probability of the random event {|Ω \D| = i}, where D ⊆ U or D = ∅, then

PN
n =

∑

Ω∈Ωn

∏

k∈Ω

δk
∏

k∈Ωc

(1 − δk), n = 0, 1, . . . , N, (14)
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which imply, for all k ∈ U ,

PN
n =











∏N
k=1(1 − δk) for n = 0

δkP
N−1
n−1 (k) + (1 − δk)P

N−1
n (k) for n = 1, 2, . . . , N − 1

∏N
k=1 δk for n = N

. (15)

Proof. If n = 0 it implies that neither Bernoulli trial ends with a success,
hence PN

0 = Pr(∩N
k=1{Ik = 0}) =

∏N
k=1(1−δk) since the Ik’s are independent

Bin(1, δk) distributed random variables. On the other hand, if n = N it
implies that PN

N =
∏N

k=1 δk by independence. If 0 < n < N it implies, by
the law of total probability,

PN
n = Pr(ZN

n )

= Pr(ZN
n , Ik = 1) + Pr(ZN

n , Ik = 0)

= Pr(ZN−1
n−1 (k), Ik = 1) + Pr(ZN−1

n (k), Ik = 0)

= Pr(ZN−1
n−1 (k)) Pr(Ik = 1) + Pr(ZN−1

n (k)) Pr(Ik = 0)

= Pr(ZN−1
n−1 (k))δk + Pr(ZN−1

n (k))(1 − δk)

where Z
N−|D|
i (D) denotes the random event {|Ω \ D| = i} and D ⊆ U or

D = ∅.

The recursion in Lemma 3 is computer intensive in that sense it incorporates
all 2N subsets Ω ⊆ U . In working with Z, where Pr(Ik = 1) = δk, the pmfs
such as Pr(Z − Ik = n), n = 1, 2, . . . , N − 1, or Pr(Z − (Ik + Il) = n),
n = 1, 2, . . . , N − 2, could be of interest. It is possible to use Lemma 3 to
obtain both sets of such pmfs. However, that would imply a recursion of size
2N−1 and 2N−2, respectively. It is proposed to use the results of Lemma 4
and 5 instead, in order to reduce the computational efforts.

Lemma 4. Let the prerequisites be as in Lemma 3 and let µk = 1/(1− δk),
then

PN−1
n (k) = µk

n
∑

i=0

(−1)n−i

(

δk
1 − δk

)n−i

PN
i (16)

Proof. Proof by induction on n. Let PN
n be defined as in Lemma 3 and

let n = 0, which imply that Ik = 0 for all k = 1, 2, . . . , N . Then, PN
0 =

P (∩N
k=1{Ik = 0}) =

∏N
k=1(1−δk), due to the independence of the Ik’s. Now,

exclude an arbitrary trial, say trial k. The probability of the remaining N−1
Bernoulli trials all fail is given by PN−1

0 (k) = µkP
N
0 , where µk = 1/(1− δk).

If n = 1, the pmf of Z could be written as

PN
1 = δkP

N−1
0 (k) + (1 − δk)P

N−1
1 (k).
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By solving for PN−1
1 (k) and substituting PN−1

0 (k) by µkP
N
0 it possible to

write

PN−1
1 (k) = µk(P

N
1 − µkδkP

N
0 )

= µk

1
∑

i=0

(−1)1−i

(

δk
1 − δk

)1−i

PN
i .

Hence, (16) is true for n = 1.

Assume (16) is true for n = j < N , then

PN−1
j (k) = µk

j
∑

i=0

(−1)j−i

(

δi
1 − δi

)j−i

PN
i .

Now, let n = j + 1 ≤ N , then by Lemma 3

PN
j+1 = δkP

N−1
j (k) + (1 − δk)P

N−1
j+1 (k).

By solving for PN−1
j+1 (k) and substituting in the expression above for PN−1

j (k),

PN−1
j+1 (k) = µk(P

N
j+1 − PN−1

j (k)δk)

= µk

(

PN
j+1 − µkδk

j
∑

i=0

(−1)j−i

(

δi
1 − δi

)j−i

PN
i

)

= µk

(

PN
j+1 + (−1)

δk
1 − δk

j
∑

i=0

(−1)j−i

(

δi
1 − δi

)j−i

PN
i

)

= µk

(

PN
j+1 +

j
∑

i=0

(−1)(j+1)−i

(

δi
1 − δi

)(j+1)−i

PN
i

)

= µk

j+1
∑

i=0

(−1)(j+1)−i

(

δi
1 − δi

)(j+1)−i

PN
i .

Lemma 5. Let the prerequisites be as in Lemma 3 and let PN
n be given by

Lemma 3 and PN−1
n (k) by Lemma 4, then

PN−2
n (k, l) =µkl

n
∑

j=0

(−1)n−j

(

δl
1 − δl

)n−j

×

j
∑

i=0

(−1)j−i

(

δk
1 − δk

)j−i

PN
i (17)

where µkl = µkµl.
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Proof. Note that PN−2
n (k, l) can be expressed as

PN−2
n (k, l) = µl

n
∑

j=0

(−1)n−j

(

δl
1 − δl

)n−j

PN−1
j (k)

by applying Lemma 4 to the reduced population U\{k}. By substituting
the expression for PN−1

n (k) given by Lemma 4 and letting µkµl = µkl the
proof is complete.

By applying the lemmas in this section to the expressions in Theorem 1 it
is possible to calculate the first- and second-order inclusion probabilities of
the 2Pπps design efficiently.

5 Exact Inclusion Probabilities of the 2Pπps De-

sign

Exact inclusion probabilities of the 2Pπps design facilitates a classical design-
based inference, see Särndal et al. (1992). These are possible to compute
efficiently by the following theorem.

Theorem 2. Let the prerequisites be as in Lemma 3, then

πk =

∑M
i=n

n
i

∑i−1
h=0(−1)i−1−hαi−h

ak PN
h

∑M
i=n P

N
i

k = 1, 2, . . . , N, (18)

and

πkl =

∑M
i=n

n(n−1)
i(i−1)

∑i−2
j=0(−1)i−2−jαi−1−j

al

∑j
h=0(−1)j−hαj−h+1

ak PN
h

∑M
i=n P

N
i

, (19)

where αak = λak/(1 − λak).

Proof. By substituting Lemma (4) and Lemma (5) into (10) and (11), re-
spectively and by letting αak = λak/(1 − λak) and αal = λal/(1 − λal),
respectively, the proof is complete.

6 Evaluation

In order for a sampling design to be of practical use it should be easily
implemented and the parameter(s) of interest should be possible to estimate
unbiasedly or nearly so.
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Suppose the population total of the variable y is of interest, i.e. ty =
∑

U y.
The standard design-based estimator of ty is given by

t̂yπ =
∑

s

yk

πk

. (20)

Laitila & Olofsson (2010) proposed to use

t̂yλ =
∑

s

yk

λk

(21)

as an estimator of ty when using the 2Pπps design and by regarding the
obtained sample as a strict πps sample. Unless λk = πk, using (21) instead
of (20) will result in some bias since,

B(t̂yλ) = Ep

(

t̂yλ

)

− ty

= Ep

(

∑

S

yk

λk

)

− ty

= Ep

(

∑

U

Ikyk

λk

)

− ty

=
∑

U

(

E(Ik)yk

λk

)

− ty

=
∑

U

(

πk

λk

− 1

)

yk. (22)

With πk 6= λk it is of interest to know the largest possible bias resulting from
using the reciprocal of λk instead of πk as design weights. A conservative
measure is given by the upper bound of absolute value of the relative bias
of the estimator. If y > 0 and t̂yλ is used as an estimator of ty, an upper
bound of the absolute value of the relative bias is given by

|RB(t̂yλ)| =

∣

∣

∣

∣

∑

Uykbk
ty

∣

∣

∣

∣

≤

∑

Uyk|bk|

ty

≤
max{|bk|}

N
k=1

∑

Uyk

ty

= max{|bk|}
N
k=1

= ψ (23)

where bk = (πk/λk − 1). See also Rosén (2000) and Aires (2000). Denote
this upper bound by ψ. If ψ is small, it indicates that πk ≈ λk for all k ∈ U .

In the following the relative bias resulting from using the 2Pπps design with
t̂yλ as estimator and the corresponding ψ measure are studied using three
data sets earlier used in the literature.
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Example 1. In this example one of the vectors in Aires (1999) is used com-
bined with an arbitrary, but given, set of yk values. The maximum integer-
valued sample size possible in order to avoid λk > 1 for at least one k ∈ U
is given by b

∑

Uxk/max{xk}
N
k=1c = 2. Both λk and λak are computed us-

ing n = m = 2. These probabilities does not depend on M . The πk’s are
computed when M = 2 and M = 5, where the first situation corresponds
to the CPS design and the latter is the 2Pπps design suggested in Laitila &
Olofsson (2010).

In both situations the first-order inclusion probabilities obtained deviate from
the target probabilities corresponding to a strict πps sample for all k ∈ U .
This implies that some bias will be expected from using t̂yλ given by (21).
Given the y-vector, in Table 1, the absolute value of the relative bias is about
2 per cent for both designs. However, for the data at hand, the absolute
value of the relative bias is reduced by 22 per cent by using the 2Pπps design
compared with the CPS design. Furthermore, using a CPS design ψ = 0.305
which is three times as large as a 2Pπps design with m = 2 and M = 5. See
Table 1.

It should also be noted that by using a 2Pπps design compared to a CPS
design the expected number of draws until an accepted sample is obtained is
reduced as well as its variation. See Table 1.

Table 1: Example 1 population values and probabilities

k yk xk λk πCPS
k π2Pπps

k

1 3 1 0.10000 0.06947 0.10058
2 1 2 0.20000 0.15428 0.20621
3 4 3 0.30000 0.25999 0.31730
4 6 5 0.50000 0.57319 0.55640
5 6 9 0.90000 0.94308 0.81950

∑

U 2.00000 2.00000 2.00000

Table 2: Example 1 design characteristics and relative bias of t̂yλ

N M m n |RB(t̂yλ)| ψ β E(T ) s.d.(T )

5 2 2 2 0.02563 0.30530 0.43040 2.32342 1.75353
5 5 2 2 0.02097 0.11281 0.70290 1.42268 0.77546

Example 2. In this example another well known auxiliary vector is used,
viz. one of the vectors in Sampford (1967). See Table 2 The maximum
integer-valued expected sample size is here equal to 5 and the results are
shown in Table 2 – 2.
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When n = 2 and xk is small or high the first-order inclusion probabilities
of the 2Pπps design is closer to the target probabilities compared to those
of the CPS design If n = 2, On the other hand, if xk is around x̄U or at
its maximum the πk’s obtained from using the CPS design are closer to the
target probabilities than those obtained from the 2Pπps design. This pattern
becomes more apparent as the sample size increases.

Table 3: Example 2 population values and probabilities, n = 2

k yk xk λk πCPS
k π2Pπps

k

1 1 2 0.08000 0.07303 0.07411
2 4 2.5 0.10000 0.09243 0.09346
3 2 3.5 0.14000 0.13265 0.13325
4 3 4 0.16000 0.15347 0.15374
5 2 5 0.20000 0.19652 0.19601
6 4 5 0.20000 0.19652 0.19601
7 6 5.5 0.22000 0.21874 0.21785
8 7 6.5 0.26000 0.26446 0.26309
9 6 7 0.28000 0.28791 0.28656

10 10 9 0.36000 0.38427 0.38591
∑

U 2.00000 2.00000 1.99999

Table 4: Example 2 population values and probabilities, n = 5

k yk xk λk πCPS
k π2Pπps

k

1 1 2 0.20000 0.17760 0.21472
2 4 2.5 0.25000 0.22735 0.26731
3 2 3.5 0.35000 0.33292 0.37005
4 3 4 0.40000 0.38828 0.41979
5 2 5 0.50000 0.50205 0.51480
6 4 5 0.50000 0.50205 0.51480
7 6 5.5 0.55000 0.55915 0.55960
8 7 6.5 0.65000 0.67046 0.64292
9 6 7 0.70000 0.72375 0.68135

10 10 9 0.90000 0.91639 0.81465
∑

U 5.00000 5.00000 5.00000

The relative bias, in absolute terms, is less than 1 per cent for both designs,
irrespectively of sample size, for given vector of y-values. See Table 2 and
Table 2. In general though, from the perspective of ψ, the upper bound of the
relative bias, in absolute terms, could be reduced by more than 90 per cent by
using a 2Pπps design compared to the corresponding CPS design when the
n = 5. See Table 2.
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Table 5: Example 2 design characteristics and the relative bias of t̂yλ

N M m n |RB(t̂yλ)| ψ β E(T ) s.d.(T )

10 2 2 2 0.00461 0.08716 0.30906 3.23560 2.68952
10 10 5 2 0.00481 0.07363 0.62978 1.58787 0.96616
10 5 5 5 0.00157 0.11200 0.27071 3.69402 3.15464
10 10 5 5 0.00641 0.09483 0.63421 1.57676 0.95363

It should also be noted that by using the 2Pπps design the expected number
of initial samples before accepting the sample as a first phase sample, as well
as its variation, is much smaller than the corresponding parameters of the
CPS design.

Example 3. The data set in the last example is the MU281 population from
Särndal et al. (1992). The number of inhabitants in the municipalities in
1975 and 1985 are used as the auxiliary information and as the variable of
interest, respectively. For this data set neither n nor m can be larger than
49 in order to avoid λk ≥ 1 and λak ≥ 1, respectively, for at least one k ∈ U .

Remark. In order to shorten the tables the population has been sorted with
respect to the values on xk (P75) and only every 28th observation are pre-
sented.

Table 6: Example 3 population values and probabilities, n=2

k yk xk λk πCPS
k π2Pπps

k

1 3 4 0.00117 0.00117 0.00117
29 7 7 0.00205 0.00204 0.00204
57 10 9 0.00264 0.00263 0.00263
85 11 11 0.00323 0.00321 0.00321

113 13 13 0.00381 0.00379 0.00379
141 17 15 0.00440 0.00438 0.00438
169 21 19 0.00557 0.00555 0.00555
197 28 27 0.00792 0.00790 0.00790
225 32 33 0.00968 0.00966 0.00966
253 56 53 0.01555 0.01556 0.01556
281 153 138 0.04048 0.04103 0.04104

∑

U 2.00000 2.00000 2.00000

In case of n = 2, the first-order inclusion probabilities are in practise iden-
tical for the two designs. The largest absolute difference is 0.000014 which
occurs when xk attain is maximum value 138. See Table 3. The difference
between the first-order inclusion probabilities of the two designs increases as

14



Table 7: Example 3 population values and probabilities, n = 5

k yk xk λk πCPS
k π2Pπps

k

1 3 4 0.00293 0.00291 0.00292
29 7 7 0.00513 0.00510 0.00510
57 10 9 0.00660 0.00656 0.00656
85 11 11 0.00807 0.00802 0.00802

113 13 13 0.00953 0.00949 0.00949
141 17 15 0.01100 0.01095 0.01095
169 21 19 0.01393 0.01388 0.01388
197 28 27 0.01980 0.01974 0.01974
225 32 33 0.02420 0.02415 0.02415
253 56 53 0.03887 0.03891 0.03890
281 153 138 0.10120 0.10252 0.10260

∑

U 5.00000 5.00000 5.00000

Table 8: Example 3 population values and probabilities, n = 25

k yk xk λk πCPS
k π2Pπps

k

1 3 4 0.01467 0.01457 0.01458
29 7 7 0.02567 0.02552 0.02552
57 10 9 0.03300 0.03282 0.03282
85 11 11 0.04033 0.04013 0.04012

113 13 13 0.04767 0.04744 0.04743
141 17 15 0.05500 0.05476 0.05475
169 21 19 0.06967 0.06941 0.06938
197 28 27 0.09900 0.09878 0.09871
225 32 33 0.12100 0.12085 0.12076
253 56 53 0.19434 0.19467 0.19452
281 153 138 0.50601 0.51035 0.51302

∑

U 25.00000 25.00000 25.00000

the sample size increases. When n = 49 the πk’s obtained by using the CPS
design is closer to the λk’s than those obtained by using the 2Pπps design,
except when xk ∈ [43, 48]. However, for the data set at hand, the relative
bias is in practise equal to zero for both designs. See Table 3.

The upper bound of the relative bias, given by ψ, is about 1 per cent for both
designs, irrespective of sample size, except when n = 49. In that case, by
using the 2Pπps design, the upper bound is about 7 per cent.

The expected number of initial samples before accepting is again much smaller
if a 2Pπps design is used compare to a CPS design, as in the previous two
examples.
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Table 9: Example 3 population values and probabilities, n = 49

k yk xk λk πCPS
k π2Pπps

k

1 3 4 0.02875 0.02857 0.02973
29 7 7 0.05031 0.05003 0.05190
57 10 9 0.06468 0.06436 0.06663
85 11 11 0.07906 0.07870 0.08132

113 13 13 0.09343 0.09305 0.09595
141 17 15 0.10780 0.10741 0.11055
169 21 19 0.13655 0.13618 0.13960
197 28 27 0.19405 0.19383 0.19715
225 32 33 0.23717 0.23715 0.23983
253 56 53 0.38090 0.38194 0.37902
281 153 138 0.99179 0.99197 0.91671

∑

U 49.00000 49.00000 49.00000

Table 10: Example 3 population parameters and the relative bias of t̂yλ

N M m n |RB(t̂yλ)| ψ β E(T ) s.d.(T )

281 2 2 2 0.000001 0.01351 0.27254 3.66917 3.12948
281 281 49 2 0.000001 0.01385 0.59585 1.67827 1.06692
281 5 5 5 0.000001 0.01297 0.17855 5.60076 5.07620
281 281 49 5 0.000001 0.01385 0.56253 1.77769 1.17579
281 25 25 25 0.000000 0.00857 0.08733 11.45035 10.93893
281 281 49 25 0.000001 0.01384 0.53360 1.87407 1.27988
281 49 49 49 0.000003 0.00625 0.06973 14.34056 13.83153
281 281 49 49 0.000009 0.07570 0.52884 1.89093 1.29795

7 Choice of parameters for the 2Pπps design

Laitila & Olofsson (2010) used m = b
∑

U xk/max{xk}
N
k=1c and M = N as

parameters in order for the 2Pπps sampling design to be easy to implement.
The same holds true for the result on the 2Pπps design presented in the
previous section. However, by the formulation of the sampling scheme in
Section 2 it is neither necessary that the expected size of the initial sample
in the first phase need to be integer-valued nor m ≥ n for the algorithm to
work. As long as there is a positive probability of getting an initial sample
of sufficient size, i.e. Pr(n ≤ |S0| ≤ M) > 0, the algorithm will eventually
reach its third step.

Furthermore, it is not necessary for m to be integer-valued as in Laitila
& Olofsson (2010) as well as in the examples in the previous section. A
different set of parameters for the 2Pπps design, i.e. choice on m and M ,
for given population and predetermined sample size n, could yield first-
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order inclusion probabilities even closer to the target probabilities of a strict
πps design. In order to illustrate this a step-wise iteration was done using

Table 11: Choice of parameters, (m,M), for minimising ψ for t̂yλ, given n,
using the MU281 population

n m M ψ2Pπps
M<N ψ2Pπps

M=N ψCPS

1 0.25 5 0.001614 0.013846 0.013678
5 6.25 13 0.000280 0.013846 0.012975
9 11.75 21 0.000323 0.013846 0.012220

13 17.00 34 0.000323 0.013846 0.011409
17 22.00 43 0.000423 0.013846 0.010535
21 26.75 41 0.000543 0.013846 0.009590
25 31.50 46 0.000636 0.013844 0.008568
29 36.25 53 0.000672 0.013794 0.007459
33 40.75 56 0.000820 0.013149 0.006486
37 45.50 72 0.000799 0.009009 0.006443
41 49.25 62 0.001344 0.005181 0.006404
45 49.00 54 0.003560 0.034270 0.006342
49 48.75 49 0.004707 0.075697 0.006253

the same population and variables as in Example 3 in Section 6. Table 7
show for which combination of m and M the theoretical upper bound of the
relative bias of the point estimator of the population total in absolute terms
is minimised.

The results show that it is possible to obtain a ψ value less than 0.5 percent,
which imply that πk ≈ λk for all k ∈ U , for all sample sizes if the expected
sample size of the initial PO sample and its upper bound, i.e. m and M
respectively, are wisely chosen.

8 Discussion

In this paper a generalisation of the sampling scheme presented by Laitila
& Olofsson (2010), based on two-phases, is presented. The design in the
first phase of the scheme could be any arbitrary WOR design, whence the
design in the second phase is an SI design. A general expression of the
corresponding sampling design is given together expressions for the first-
and second-order inclusion probabilities.

In the standard setting, when a PO design is used in the first phase, the
corresponding design is the 2Pπps design; a design which could be used to
generate an approximative strict πps sample in a simple manner which is
important since a sampling design sometimes has to be communicated to
and/or executed by a non-statistician.
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Starting from the pmf of the sum of N independent, but not equally dis-
tributed Bernoulli variables, algorithms for calculating the first- and second-
order inclusion probabilities of the 2Pπps design were derived based on pmfs
of sums of N −1 and N −2 variables. These algorithms facilitate the 2Pπps
to be evaluated as well as dealing with three different ways of inference; by
standard design-based theory, by two-phase theory or by treating the sample
as a true πps sample.

As shown by the different examples in Section 6 the 2Pπps design yields
similar results as the, in practise often used, CPS design. In case of target
inclusion probabilities close to one, the CPS design is better than the 2Pπps
design in terms of the distance between πk and λk, since, by its formulation,
such probabilities are not attainable by the 2Pπps design. This could how-
ever be handled in two different ways, depending on the situation at hand.
One possible solution is to include those population elements with target in-
clusion probabilities close to one with probability one into the final sample,
i.e. by introducing a take-all stratum. Another possibility is to choose the
parameters of the design, m and M , more wisely. However the consequences
of either one of these possibilities remains to be further studied.

The formulation of the sampling scheme and corresponding sampling design
allows for a choice of a different set of parameters, i.e. m and M , than
those used by Laitila & Olofsson (2010) and in the examples. If such a
set it wisely chosen it has been shown that it is possible to get an upper
bound of the relative bias which in practise equals zero, which in turn imply
πk ≈ λk. However, how to find such a set in a simple manner without a
heavy iteration remains to be solved.

A Third- and fourth-order inclusion probabilities

of the 2Pπps sampling design

The third-order inclusion probabilities of the 2Pπps sampling design are
given by

πklq = Pr(k, l, q ∈ S)

= Pr(k, l, q ∈ S|k, l, q ∈ Sa) Pr(k, l, q ∈ Sa)

= λakλalλaq

∑M
n=i

(

n
i

)(

n−3
i−3

)−1
Pr(n−k,l,q

S0
= i− 3)

Pr(CM
n (∅))

(24)
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whilst the fourth-order inclusion probabilities of the 2Pπps sampling design
are given by

πklqr = Pr(k, l, q, r ∈ S)

= Pr(k, l, q, r ∈ S|k, l, q, r ∈ Sa) Pr(k, l, q, r ∈ Sa)

= λakλalλaqλar

∑M
n=i

(

n
i

)(

n−4
i−4

)−1
Pr(n−k,l,q,r

S0
= i− 4)

Pr(CM
n (∅))

(25)

The proofs of the expressions are similar to the proof of the first-order in-
clusion probabilities given by (10).
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