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Abstract: 
 
GARCH models have been gaining popularity since the last two decades probably because of their ability to 
capture non-linear dynamics in the real life data which we often observe especially in financial markets. This 
paper discusses the relative ability of some common information criteria (AIC, AICc, SIC and HQ) using their 
probability of correct selection, as a measure of performance, in the presence of GARCH effect. The 
investigation has been performed using Monte Carlo simulation of conditional variance GARCH processes with 
6 different kinds of DGPs including ( ),GARCH p q for 1, 2p = and 1,2q = , GARCH (1,1)-Leverage, and 
GARCH(1,1)-Spillover. All these models are further simulated with different parameter combinations to study 
the possible effect of volatility structures on these information criteria. We noticed an impact of volatility 
structure of time series on the performance of these criteria. 
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1. Introduction: 
 
In financial time series, modeling real data needs proper attention and suitable model selection is required to 
better understand the structure of the candidate data which ultimately helps in better forecasting.  Because these 
selected models are later used for policy making whether in finance or economics.  The reason for this care is 
the nonlinear dynamics present in such data. For financial data, it is sometime obvious to find volatility clusters 
in the candidate data. Volatility clustering refers to the observation that “large changes tend to be followed by 
large changes, of either sign, and small changes tend to be followed by small changes” (Mandelbrot, 1963). In 
other words, volatility depends more on recent past values than distant past values. Many research papers have 
been presented to discuss the random behavior of volatility.  
 
In the initial empirical research of finance, researchers were mainly focused on the linear relationship of data 
and most of the modeling was done by the popular Box and Jenkins approach. In ARMA framework, current 
value of the series of interest is written as a linear function of its own lagged values and current and past noise 
process or innovations. These innovations are further assumed to be independent and identically distributed or, 
technically speaking, homoskedastic in nature. Because of this property, these models are not suitable for non-
linear financial and monetary problems. One of the challenges for econometricians is to specify how this non-
linear information can be used to forecast the mean and variance of the return of any asset or portfolio 
conditioned on the past information. Most of the early empirical work on finance used equally weighted 
average of the squared residuals of most recent returns as the method for modeling variance. But as we 
mentioned before, volatility of asset returns moves in clusters depending on recent past values more than distant 
past values, this phenomenon seems unrealistic in this case and allowed a suitable approach to be introduced.  
 
Finally, the model is developed to capture such behavior namely Autoregressive Conditional Heteroskedasticity 
(ARCH), originally proposed by Robert Engle in his celebrated paper in 1982, which arise as a good framework 
to discuss such issues and later its generalized version GARCH, proposed by Bollerslev (1986). The original 
model is: 
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Where ty is the dependent variable, tε  is the disturbance term and tψ  is the information set available at 

time t , here p shows the lag length of ARCH model and ' sα are the vector of unknown parameters. In the 
variance equation, Engle (1986) allowed the best weights ( ' sα ) to be estimated for the data for forecasting the 
variance.  
 
 
 
 
 
 
 
 
 
 
 



 
And GARCH ( ),p q model is: 
 

( )

( )2 2 2
0

1 1

0

,       0,1 ,   =1,...,

+     | 0,

0,  0,  0,  0,    1,...,
0,   =1,...,

t t t t

p q

t i t i i t i t t t
i i

i

i

y h N t n

h h N h

where
p q i q

i p

ε ε

α β α ε ε ψ

α α
β

− −
= =

=

= +

≥ ≥ > ≥ =
≥

∑ ∑





 

 
For 0,p = the process reduces to the ARCH ( )q process, and for 0,  tp q ε= = is simply a white noise. 
 
There is a plethora of models which have been proposed by researchers (e.g., Nelson (1991), Zakoian (1994), 
Engle and Bollerslev (1986), Baillie et al (1996) among others) subsequent to the work of Engle (1982) to 
discuss different dynamical structure related to the temporal variation in financial data according to need. In 
ARCH (q) process the conditional variance is specified as a linear function of past values but the GARCH (p,q) 
process also allows the conditional variances to depend linearly on the past behavior of squared errors. Such 
specification can be thought of as adaptive learning mechanism. Under GARCH framework, the shocks persist 
according to an autoregressive moving average (ARMA) structure of the squared residuals of the process. 
Empirically GARCH model is proved to be the useful mean for capturing the momentum of conditional 
variance in financial data. 
 
Despite the fact that many models have been proposed belonging to the ARCH family (e.g. Bera and Higgins 
(1993), Bollerslev et. al. (1994) and Diebold and Lopez (1995) for a survey), existing studies, almost 
unanimously, agreed on the performance of standard GARCH (1,1) model rather than attempting to determine 
the ‘appropriate’ lag values. The reason can possibly be the attitude of researchers that first lag of conditional 
variance is sufficient to capture all the volatility clustering present in the data. This supposition can be 
misguided if the real data has high order variance structure so care should be taken to insure the true 
specification of volatility structure for the candidate data. Because mis-specified variance models (say, 
GARCH) can influence the forecast accuracy (Brooks and Burke (1998)). We tried to simulate higher order 
GARCH process as well, to study if there are any such misspecifications.     
 
 
The purpose of this paper is to study the ability of the traditional information criteria (IC) to identify the real 
DGP in the presence of GARCH effects. For mean equation, Akaike (Akaike, 1973) and Schwarz (Schwarz, 
1978) information criteria are quite popular when choosing the true model among alternative specifications. But 
when the variance equation is jointly estimated, there accuracy has always been ambiguous. These traditional 
criteria seem inappropriate for ARCH type errors because they focus on the first moment of the data (Pagan and 
Schwert, 1990). There have been several modifications proposed by different researchers (Brooks and Burke, 
2003, Hughes et al, 2004 and Bierens, H. J., 2006) to incorporate ARCH effect in the IC. We simulated 
GARCH (p,q) error models for p=1,2 and q=1,2. These models are further simulated at different parameter 
combinations keeping in mind the volatile behavior of financial time series. The reason for such study is to 
investigate the possible effect of such series on the previously proposed data selection methods.  A model with 
possible leverage effect is also simulated at two different leverage levels. The rest of the paper proceeds as 
follows. Section 2 explains the brief description about model selection criteria used in this paper. Section 3 
deals with the theory and modeling method of spillover because causality in variance is also an important factor 
when modeling financial time series across different markets. Section 4 presents the estimated results and 
discusses their implications. Section 5 finally summarizes the finding and comments.  
 
 
 



  
2. Model Selection Criteria:  

 
All the inference and evaluation of real life data depends on the true specification of model. Choosing most 
‘adequate’ model is the essence of data analysis, which ultimately returns with good forecasting results. This 
leads to the importance of model selection criteria for assessing the ‘goodness’ of a specified model. Finding 
optimal dimension of a model that will fit a candidate data has always been favorite for researchers. The 
number of parameters in the model plays an important role in both analysis and forecasting. Because the 
addition of unnecessary lags reduces the sum of squares of estimated residuals and the forecasting performance 
as well.  
 
According to Akaike (1973), a model should be evaluated on the basis of good results when it is used for 
prediction.  We know the prediction error study through residual analysis is one of the popular method used for 
model validation. He suggested method for evaluating model in terms of Kullback–Leibler information, which 
is based on the concept of closeness between generic distribution ( )g x  defined by the model and the true 

distribution ( )f x besides the more commonly used method of simply minimizing the prediction error. 

Kullback-Leibler information ( ),I f g is the information lost when model ( )g x  is used to approximate ( )f x , 
this is defined for continuous functions as the integral 
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Here it is obvious that the best model loses least information among others in the set. 
 
Four different, popularly known, methods are used for our purpose. The one most popular is Akaike’s (1973) 
information criterion. The Akaike Information Criterion (AIC) has commonly been used and significantly 
known method in the model selection for decades in a wide variety of fields for analyzing actual data. It was 
designed to be an asymptotically unbiased estimate of the Kullback-Leibler index of the fitted model relative to 
the true model. For example, in the special case of least squares (LS) estimation with normally distributed 
errors AIC can be expressed as: 
 
    ( )2ˆ2log 2AIC kσ= − +  

where 2σ̂  is the estimated model error variance, 
            ‘k’ is the number of free parameters in the model,  
 
Bierens, H.J. (2006) recommended the following modification, if the model includes ARCH type errors.  
 
                            ( ) ( ) ( )2ˆ2 log 2 1 log 2AIC kσ π= − + − −  
 
Akaike is the measure of goodness-of-fit (likelihood) of an estimated statistical model. In AIC, the estimation is 
divided into two sets and the compromise takes place between the log maximized likelihood i.e., ( )ˆ2 log θ−  (the 

lack of fit component) and k (the penalty component) which increases with the number of parameters and it is 
used to prevent overfitting. Panelizing likelihood in the model is an attempt to select a more parsimonious 
model. 
 
 
Existing studies showed that AIC is not consistent and hence does not lead to the choice of the correct model, 
with high probability, in large samples. Shibata (1976) showed through empirical evidences that AIC has the 
tendency to choose models which are over-parameterized. Various modifications have been produced to 



overcome this lack of consistency. Schwarz (1978) developed a consistent criterion for models defined in terms 
of their posterior probability (Bayesian approach) which is given as: 
      ( ) ( )2ˆ2 log logSIC k nσ= − +  

where 2σ̂  is the estimated model error variance, 
            k  is the number of free parameters in the model,  
            n  is the number of observations, 
 
In ARCH context, this form will look like; 
 
                               ( ) ( ) ( ) ( )2ˆ2 log log 1 log 2SIC k nσ π= − + ∗ − −  
 
From the above formulation, it can be seen that SIC is used for models estimated by using the maximum 
likelihood method and that the criterion is obtained under the condition that the sample size n is made 
sufficiently large. Burnham and Anderson (2002, 2004) provided convincing arguments in favor of AIC (or 
AICc) over SIC. 
 
 
The general belief about an information criterion is that it provides a measure of information that strikes a 
balance between the measure of goodness of fit and parsimonious specification of the model. Various 
information criteria differ in how to strike this balance. Therefore the chosen model would be the one which 
minimizes the value of the information criterion, so that a model with larger number of lags would only be 
selected if the minimized value of log-likelihood

 
outweighed the value of the penalty term. 

 
Hannan-Quinn (1979) and Hannan (1980) proposed another consistent criterion for the order of an 
autoregression based on law of iterated logarithm, which has the quality for penalty function to decrease as fast 
as possible for a strongly consistent estimator, as the sample size increases. The criterion is given by 
 
     ( ) ( )( )2ˆlog 2 log logHQ k nσ= − +  

where ' 'n  is the number of observations.  
 
 
In ARCH context; 
 
 

                             ( ) ( ) ( )( ) ( )2ˆlog 2 *log log 1 log 2HQ k nσ π= − + − −  
 
In 1989, Hurvich and Tsai found that SIC, which was modified from AIC, is not asymptotically efficient. So 
they suggested the bias corrected version of AIC, known as Akaike’s Information Corrected Criterion or AICc, 
which is given as: 
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The correction is of particular use when the sample size is small, or when the number of fitted parameters is 
relatively large to sample size ' 'n . 
 
In ARCH context, we use the following form for AICc; 
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In small sample, AIC and AICc may perform better towards selecting the true DGP than HQ and SIC. As, the 
former two criteria are designed for minimizing the forecast error variance, models based on AIC and AICc 
may produce superior forecasting results although they may not select the models correctly (e.g. Lutkepohl 
2005).  
 
 

3. Volatility Spillover: 
 
Detection of causality in variance has been gained more attention in recent decades across various financial 
asset price movements. By causality we mean causality in the Granger (1969, 1980) sense. Another equally 
important issue is the persistence in the variance of a random variable, which has been evolving through time. 
Persistence in variance refers to the conditional variance. However, recently increasing interest is shown in the 
causation in conditional variance across various financial asset price movements. The causation in variance 
between a pair of economic time series is popularly known as Volatility Spillover.  
 
Many of the empirical and theoretical studies, on the relationship between different assets, concentrate on the 
spillover between economies and within economy. The study of volatility spillover helps understanding how 
the information is transmitted across assets and markets and how market assimilates new information. 
According to Ross (1989), volatility is often related to the rate of information flow. Absence of volatility 
spillover implies that one large shock increases the volatility only in that specific asset or market while in the 
existence of spillover it could increases the volatility not only in its own assets or market but also in other assets 
or markets (e.g. Hong, Y, 2001).  
 
The model for the spillover in a GARCH process is considered as: 

                              2 2
1 1 1 1 1 1 1 12 2 1 12 2 1t t t t th h hγ ψ φ ε ζ ϕ ε− − − −= + + + +     

To investigate the performance of Information Criteria in the presence of volatility spillover, a set of Monte 
Carlo experiment with different sample size ( n =500, 1000, 2000) is executed and the results are summarized 
in Table 5.  
 
 
 

4. Monte Carlo Methodology: 
 
The model we considered, for our purpose, is ( ),       0,1 ,   =1,...,t t t ty h N t nε ε= 
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We simulated a total of 10 different models, including ( )1,1GARCH  at three different frequency levels (Low, 
Medium, and High), (1, 2), (2,1) and (2,2)GARCH GARCH GARCH , GARCH-Leverage, and GARCH-
Spillover at different parameter values for sample sizes n=500,1000 and 2000 . In the next step, simulated 
models are fitted to the ( ),GARCH p q  type models with 1,2 and 1,2p q= =  to check the performance of 
information criteria in favor of true data generating process (DGP). 
 
For each combination, a sample size of n  observations are generated with n =500, 1000 and 2000. The 
minimum sample size of 500 observations is selected because the detection of true ARCH effects is less 
probable for samples fewer than 300 and around 500 observations is desired for fitting ARCH models (McClain 
et al, 1996).  Large sample sizes (1000 and 2000) are chosen to approximately represent heavy set of real life 
financial data and also to observe the structure more accurately. Frequency levels are defined according to pre-
assigned initial values of parameters.  
 
Then we used four different and popularly known information criteria to check the performance of simulation 
which are AIC, SIC, HQ and AICc. The appropriate information criterion is one which most frequently selects 
the model used to generate the data. Thus the optimality of model selection is defined as how often does the 
criterion select the most appropriate model among all combinations. We estimated all 13 combinations of 
models and evaluate the criteria, and the results are summarized in the next chapter. 
 
We used 1000 replications for each model to study the performance. All the simulations are performed using 
the GAUSS 8.0 random number generator.  
 
 
5. Results 

 
6.1 GARCH(1,1): 
 
 
The focus of this paper is on the relative ability of the model selection criteria to detect GARCH type data 
generating process. The first of the models to be considered is ( )1,1GARCH  which is used to generate n  
different random numbers. A set of ( ),GARCH p q  with 1,2 and 1,2p q= =  are then fitted to this data and 
with the help of four information criteria the optimal model is identified. The process is repeated 1000 times 



and the result is summarized in Table 1.1 where the highlighted area shows the estimated probability of correct 
selection. 
 

 Table 1.1 shows, using the probability of correct selection as a measure of performance, that SIC and HQ 
outperform both the AIC and AICc in each case considered and the general performance of these model 
selection criteria is slightly lower in the presence of GARCH effect. SIC selected the correct model as an 
optimal with the performance rate of almost 96% for 500n =  followed by HQ with 85.5% while the AIC and 
AICc managing to correctly identify the generating process almost 71% and 72% of the times respectively. 
Here we observed the consistency of SIC and HQ towards the correct model. For n =1000, the performance 
rate for SIC is once again higher than others with 96.6%. Here again HQ performed the second best criterion 
with 87.9 selection rate of true DGP, followed by AIC with 74.2% of times which is slightly greater than the 
performance rate at n=500. The performance of AICC is much closer to AIC at this stage. Further, we notice 
that increase in sample observation affects the criterion performance positively. Like, at n=2000, the same 
criterion SIC chose the correct model with highest performance rate of 98% and HQ remained the next best 
with 90.7% performance level.  
 
On the other side, the performance of these criteria toward selecting other models is quite low and likely to be 
ignored. Here AIC and AICc selected ( )1,2GARCH as optimal model with some level of performance 
compared to SIC and HQ. For n =500, AIC selected the same model 14% of the times While AICc also 
performed nearly close to AIC with 13.7% for n =500. Similarly with increased sample size like n =2000, the 
performance rate for AIC and AICc decreased slightly with 12.2%.  
 
As we know the structure of financial time series varies with respect to volatility, keeping this in mind, we 
simulated some other GARCH (1,1) models with different parameter combinations to study the impact of such 
series on information criteria. The results for one such model is presented in Table 1.2. We observed a similar 
pattern of correct selection for all the considered criteria. Both SIC and HQ outperform AIC and AICc with 
high rate of performance. Notice that in this model, we marginally increase the clustering parameter α with the 
sum indicates process near integration, but we observed it doesn’t affect the information criteria. In the last 
case, another combination is simulated with a slight lesser value of β and same value of α , to examine if it 
effects the performance rate or not. Here the process is slightly away from integration. Table 1.3 summarizes 
the results and again we observed a consistence performance of SIC and HQ with high rate of selection among 
all the considered criteria. 
 
As we mentioned earlier, Akaike Information Criteria (AIC) is biased towards selecting higher order 

( ),GARCH p q  models and their performance is not satisfactory for small sample size which we satisfied 
through our study. We conclude SIC is observed as best among all criteria followed by HQ in 

( ),GARCH p q model selection and continued to exhibit excellent model selection abilities.  
 
 

  Table:1.1 GARH(1,1) ( )1 10.089,  0.85 α β= =  
Obs_500 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.708 0.140 0.125 0.027 
SIC 0.958 0.018 0.023 0.001 
HQ 0.855 0.064 0.076 0.005 

AICc 0.717 0.137 0.120 0.026 
Obs_1000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.713 0.128 0.134 0.025 
SIC 0.966 0.020 0.014 0 
HQ 0.879 0.064 0.051 0.006 

AICc 0.715 0.128 0.133 0.024 



Obs_2000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 
 

AIC 0.739 0.122 0.117 0.022 
SIC 0.980 0.009 0.011 0 
HQ 0.907 0.050 0.040 0.003 

AICc 0.741 0.122 0.116 0.021 
 
 

Table:1.2 GARH(1,1) ( )1 10.15,  0.80 α β= =  
Obs_500 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.726 0.121 0.126 0.027 
SIC 0.961 0.015 0.024 0 
HQ 0.865 0.062 0.068 0.005 

AICc 0.731 0.120 0.124 0.025 
Obs_1000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.726 0.116 0.137 0.021 
SIC 0.961 0.021 0.018 0 
HQ 0.876 0.058 0.062 0.004 

AICc 0.730 0.115 0.135 0.020 
Obs_2000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

 
AIC 0.741 0.124 0.114 0.021 
SIC 0.975 0.015 0.010 0 
HQ 0.909 0.048 0.040 0.003 

AICc 0.741 0.124 0.114 0.021 
 
 

Table:1.3 GARH(1,1) ( )1 10.15,  0.75 α β= =  
Obs_500 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.738 0.108 0.133 0.021 
SIC 0.962 0.015 0.023 0 
HQ 0.867 0.056 0.074 0.003 

AICc 0.742 0.108 0.131 0.019 
Obs_1000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.712 0.127 0.140 0.021 
SIC 0.969 0.018 0.013 0 
HQ 0.879 0.066 0.052 0.003 

AICc 0.714 0.127 0.139 0.020 
Obs_2000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

 
AIC 0.736 0.125 0.121 0.018 
SIC 0.985 0.005 0.010 0 
HQ 0.909 0.045 0.045 0.001 

AICc 0.737 0.125 0.120 0.018 
 
 
 
 



 
 
5.2 GARCH(2,1): 
 

Table 2.1 presents the results for the estimation procedure with slightly higher dimension where a GARCH(2,1) is 
simulated  to study the effect of increasing GARCH parameters in the model. For n=500, none of the criteria 
correctly identify the true DGP and choose the lowest possible GARCH(1,1) model. The average probability of 
underfitting for SIC remains high followed by HQ, while two Akaike’s specifications show little tendency towards 
the selection of true DGP with around 20% of times.   A change in their performance is observed with the increase in 
sample observation. For n=2000, AIC and AICc select the correct model almost 44% of the times but their level of 
performance is still unsatisfactory. While SIC and HQ remain consistent with their choice of GARCH(1,1) as the 
correct model. Another process, with a change in parameter combination, is simulated and the results are contained 
in Table 2.2. In this case, we noticed an impact of volatility structure on the performance of these proposed criteria. 
Initially at small sample size, AIC and AICc detect the true data with almost 38% of times but their performance gets 
better with the increase in sample size. Both the Akaike’s specification managed to select the right model almost 
72.5% of times for n=2000. Similarly this change is noticed for SIC and HQ and they chose the right model 29% and 
56% of times respectively. Here we observed a high probability for HQ towards the correct model but SIC remains 
consistent with GARCH(1,1). As we mentioned earlier, we observed here the volatile structure of data do impact the 
performance information criteria but a large sample size is needed to properly capture such behaviour. For small 
sample size, these criteria could mislead the selection of correct model specially with higher dimension.  

 
 
Table 2.1: GARCH(2,1) ( )1 1 20.1,  0.45,  =0.40 α β β= = : 

Obs_500 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 
AIC 0.759 0.04 0.198 0.003 
SIC 0.976 0.003 0.021 0 
HQ 0.901 0.01 0.088 0.001 

AICc 0.765 0.039 0.193 0.003 
Obs_1000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.649 0.046 0.299 0.006 
SIC 0.947 0.003 0.050 0 
HQ 0.831 0.015 0.153 0.001 

AICc 0.653 0.045 0.297 0.005 
Obs_2000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.526 0.023 0.437 0.014 
SIC 0.923 0.001 0.076 0 
HQ 0.735 0.008 0.257 0 

AICc 0.526 0.023 0.437 0.014 
  
Table 2.2: GARCH(2,1) ( )1 1 20.22,  0.40,  =0.35 α β β= = : 

Obs_500 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 
AIC 0.598 0.016 0.383 0.003 
SIC 0.936 0.002 0.062 0 
HQ 0.79 0.005 0.204 0.001 

AICc 0.609 0.015 0.373 0.003 
Obs_1000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.463 0.017 0.501 0.019 
SIC 0.868 0.002 0.130 0 
HQ 0.661 0.006 0.333 0 

AICc 0.467 0.017 0.498 0.018 
Obs_2000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 



AIC 0.222 0.006 0.728 0.044 
SIC 0.711 0 0.289 0 
HQ 0.429 0.002 0.560 0.009 

AICc 0.225 0.006 0.725 0.044 
 
 
5.3 GARCH(1,2): 
 
Next we proceed for some different combination of GARCH-type model and study the effect of traditional IC’s 
in the presence of such models. None of these criteria scored perfectly towards selecting the correct model for 
n=500. AIC and AICc manage to outperform SIC and HQ but with small probability. But these two criteria 
continued to show an improvement in performance with sample size, detecting the correct data generating 
process almost 78% of times.  There is an improvement observed for HQ and SIC as well and they could 
manage to detect the true process 69% and 49% of times for n=1000 respectively. For larger sample 
observations, all of these criteria unanimously chose the true DGP with high performance rate. Here, we again 
noticed an impact of sample observations defining the true process. For small sample observations, SIC and 
probably HQ can mislead the analyst to the wrong process or the one with lower dimension. We consider 
another process with the same dimension but with different parameter combination. The similar pattern of 
performance is observed in this case but SIC is found more consistent towards GARCH (1,1) even with sample 
size of 1000 observations. While the two Akaike’s specification and HQ furnished a level of performance 
consistent with the earlier case.  A negligible change in performance of these criteria is observed for both these 
processes.  
 

 Table 3.1: GARCH(1,2) ( )1 2 10.15,  =0.15 0.65  α α β= = : 
Obs_500 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

 
AIC 0.34 0.592 0.007 0.061 
SIC 0.759 0.238 0 0.003 
HQ 0.549 0.435 0.004 0.012 

AICc 0.346 0.587 0.007 0.06 
Obs_1000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.138 0.783 0.002 0.077 
SIC 0.508 0.492 0 0 
HQ 0.295 0.691 0 0.014 

AICc 0.138 0.783 0.002 0.077 
Obs_2000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.025 0.886 0 0.089 
SIC 0.228 0.766 0 0.006 
HQ 0.082 0.896 0 0.022 

AICc 0.025 0.886 0 0.089 
 

Table 3.2: GARCH(1,2) ( )1 2 10.25,  =0.15 0.55  α α β= = : 
Obs_500 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

 
AIC 0.387 0.571 0.004 0.038 
SIC 0.781 0.21 0 0.001 
HQ 0.607 0.381 0.003 0.009 

AICc 0.393 0.566 0.004 0.037 
Obs_1000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.215 0.722 0.004 0.059 
SIC 0.622 0.377 0.001 0 
HQ 0.398 0.591 0.001 0.010 



AICc 0.215 0.722 0.004 0.059 
Obs_2000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.062 0.853 0 0.085 
SIC 0.380 0.616 0 0.004 
HQ 0.151 0.830 0 0.019 

AICc 0.062 0.854 0 0.084 
 
 
5.4 GARCH(2,2): 

 
Finally, among the set of GARCH-type variance models, a slightly higher dimension of model is 
simulated with two different set of parameters to study the dynamical nature of GARCH model. The 
models are simulated at n=500, 1000, and 2000 sample observations and results are contained in Table 
4. Table 4.1 presents the estimated results for GARCH (2,2) process with 
( )1 2 1 20.10,  =0.1, 0.42,  =0.35α α β β= = set of parameters. None of the criterion were able to detect 
the higher order GARCH(2,2) process as optimal and chose GARCH(1,1) as the right model with high 
rate of performance.  There is a shift in model selection noticed for the two Akaike’s criteria with the 
increase in sample size more towards GARCH(1,2) with almost 36% rate of performance and almost 
15% for GARCH(2,2). But for the next model with different parameter combinations, we observed 
marginally better performance and both the Akaike’s specification could manage to correctly identify 
the process almost 22% of times while the two remaining criteria are found consistent with the earlier 
findings. We noticed a change in performance for HQ but it failed to detect the true DGP similar like 
SIC .  For this case, we also observed an impact of parameter combination or technically speaking the 
volatility structure of the candidate data the performance of these criteria. We proved through 
simulation that as we increase α  and correspondingly decrease the effect of β  in the GARCH(p,q) 
process, these information criteria are heading towards the choice of right model with high 
performance rate. 
 
  Table 4.1: GARCH(2,2) ( )1 2 1 20.1 =0.1 0.42,  =0.35α α β β= = : 

Obs_500  GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 
 

AIC 0.629 0.261 0.046 0.064 
SIC 0.923 0.069 0.007 0.001 
HQ 0.802 0.160 0.022 0.016 

AICc 0.634 0.259 0.045 0.062 
Obs_1000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.560 0.328 0.023 0.089 
SIC 0.921 0.074 0.003 0.002 
HQ 0.766 0.205 0.010 0.019 

AICc 0.563 0.325 0.023 0.089 
Obs_2000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

 
AIC 0.461 0.368 0.018 0.153 
SIC 0.895 0.100 0.002 0.003 
HQ 0.723 0.239 0.006 0.032 

AICc 0.462 0.368 0.018 0.152 
  
 Table 4.2: GARCH(2,2) ( )1 2 1 20.10,  0.12,  0.38,  0.38α α β β= = = = : 

Obs_500 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 
AIC 0.644 0.229 0.017 0.11 
SIC 0.937 0.058 0.002 0.003 
HQ 0.83 0.139 0.005 0.026 

AICc 0.651 0.229 0.014 0.106 



Obs_1000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 
AIC 0.465 0.381 0.016 0.138 
SIC 0.873 0.124 0 0.003 
HQ 0.686 0.272 0.006 0.036 

AICc 0.469 0.380 0.015 0.136 
Obs_2000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.333 0.434 0.009 0.224 
SIC 0.836 0.157 0.001 0.006 
HQ 0.582 0.343 0.002 0.073 

AICc 0.336 0.433 0.009 0.222 
 

5.5 GARCH Effect with Leverage: 
 

In this sub-section we considered some of the exotic variants of the GARCH-type models. EGARCH(p,q) 
model is introduced by Nelson(1991) to capture asymmetric behavior of the market’s response to shocks. Table 
5 presents the simulation results for GARCH(1,1)-Leverage models. We simulated this process with two 
predefined leverage parameter λ =-0.4 and -0.8 so that we can study its effect on the performance rate of  the 
traditional information criteria towards the true data generating process. First we consider the same 
GARCH(1,1) process studied earlier without leverage effect with ( )1 1 10.089,  0.85,  0.4α β λ= = = −  
combination of parameter constraints. The choice of same process will help us comparing any change because 
of possible leverage effect with the previous findings. In this case, we observed the findings are quite similar to 
the one without leverage effect and it seems leverage parameter did not affect the performance of these criteria. 
But for the next model with slightly bigger value of λ , a marginally inferior change is noticed for the two 
Akaike’s  criteria but the other two SIC and HQ procedures consistently exhibit the superior model selection 
performance comparably, managing to correctly identified the process 95% and 85% of the times respectively 
at n=500. All these criteria are gaining more potential towards selecting the correct model with sample size.   

 
    Table 5.1: ( )1 1 10.089,  0.85,  0.4α β λ= = = −  

Obs_500 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 
AIC 0.635 0.077 0.144 0.144 
SIC 0.973 0 0.019 0.008 
HQ 0.86 0.027 0.074 0.039 

AICc 0.651 0.076 0.14 0.133 
Obs_1000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.67 0.068 0.131 0.131 
SIC 0.985 0.001 0.011 0.003 
HQ 0.895 0.017 0.064 0.024 

AICc 0.675 0.067 0.129 0.129 
Obs_2000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.698 0.066 0.112 0.124 
SIC 0.995 0 0.005 0 
HQ 0.934 0.009 0.042 0.015 

AICc 0.699 0.065 0.113 0.123 
 
 Table 5.2: ( )1 1 10.15,  0.80,  0.8α β λ= = = −  

Obs_500 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 
AIC 0.623 0.066 0.129 0.182 
SIC 0.954 0.006 0.028 0.012 
HQ 0.85 0.03 0.067 0.053 

AICc 0.638 0.066 0.127 0.169 
Obs_1000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 



AIC 0.67 0.072 0.125 0.133 
SIC 0.982 0.001 0.01 0.007 
HQ 0.919 0.015 0.037 0.029 

AICc 0.678 0.066 0.123 0.133 
Obs_2000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.678 0.068 0.101 0.153 
SIC 0.989 0 0.004 0.007 
HQ 0.925 0.011 0.038 0.026 

AICc 0.68 0.067 0.101 0.152 
 
 
 
6.6 GARCH Effect with Spillover: 
 
Finally in Table 6, we summarized the simulation results for GARCH(1,1) with spillover. We simulated two 
different process with a change in parameters. First of the model considered, we restrict β to be same for both 
the series.  All the criteria showed their tendency towards GARCH(1,1) as a correct model. SIC and HQ 
remained the best procedures with a high performance rate , scoring 88% and 76% accuracy respectively, but 
Akaike’s procedures could able to detect GARCH(2,1) and GARCH(2,2) but with low probability (22% and 
15% respectively) for n=500. For large sample sizes, their performance accuracy increased towards 
GARCH(1,1) as the true DGP and correspondingly decreased in favor of GARCH(2,1) and GARCH(2,2).  For 
another model considered with different value of β , a similar pattern is observed and the performance of these 
information criteria is found largely unaltered.  
 
So as we said before, (1,1)GARCH  is proved to be sufficient in capturing volatility by the practitioners, here 
also our simulation results are providing sound evidence to accept this model as the optimal among higher order 
GARCH processes.  
 
  Table 6.1: ( )0.15,  0.35,  0.12,   0.35i i i iα β φ ψ= = = =  

Obs_500 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 
AIC 0.558 0.067 0.224 0.151 
SIC 0.888 0.002 0.093 0.017 
HQ 0.763 0.02 0.163 0.054 

AICc 0.568 0.064 0.225 0.143 
Obs_1000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.581 0.083 0.189 0.147 
SIC 0.915 0.004 0.075 0.006 
HQ 0.798 0.018 0.14 0.044 

AICc 0.588 0.079 0.187 0.146 
Obs_2000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.587 0.078 0.177 0.158 
SIC 0.927 0.001 0.069 0.003 
HQ 0.841 0.017 0.123 0.019 

AICc 0.588 0.077 0.177 0.158 
 

Table 6.2: ( )0.1,    0.42,  0.12,   0.33i i i iα β φ ψ= = = =  
 

Obs_500 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 
AIC 0.53 0.097 0.233 0.14 
SIC 0.87 0.004 0.114 0.012 
HQ 0.751 0.017 0.189 0.043 

AICc 0.539 0.094 0.234 0.133 



Obs_1000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.543 0.085 0.206 0.166 
SIC 0.901 0.002 0.089 0.008 
HQ 0.799 0.015 0.148 0.038 

AICc 0.551 0.083 0.203 0.163 
Obs_2000 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 0.547 0.102 0.194 0.157 
SIC 0.899 0.002 0.098 0.001 
HQ 0.808 0.02 0.141 0.031 

AICc 0.55 0.102 0.193 0.155 
 
 

 
Conclusion 
 
Finding an optimal model for any time series is one of the goals of analysis so that one can get good forecasting 
results with less prediction error. The model with minimum possible lags is also given priority to get parsimony 
and avoid unnecessary penalties. Several measures have been proposed for selection of a model which are in 
some sense optimal for conditional mean equations but in presence of GARCH effect, their performance is not 
well-understood. As we know from past research that GARCH(1,1) is proved to be sufficient in capturing 
volatility by the practitioners, a blind faith on GARCH(1,1) process, in every case, can result with high 
prediction errors.  We simulated 13 different GARCH-type models to study the merits of various criteria in the 
role of GARCH-type model selection and this investigation is done by a huge set of Monte Carlo experiment. 
We simulated higher order GARCH process to study the behavior of these selection procedures in the presence 
of such processes. Our simulation results also provide some insight about this wrong belief. For higher order 
dimensions, specially for GARCH(2,2) process, these criteria chose the wrong model for small sample sizes.  
Among all information criteria, SIC and HQ performed well with high probability of selecting the true DGP in 
the presence of GARCH effect for lower dimension. But for higher dimension two Akaike’s specification are 
found consistent in the selection of higher order GARCH process. We noticed an impact of volatility structure 
of time series on the performance of these criteria which can be misled if not taken seriously.  
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