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Introduction

Economic theory main basis for econometric models, but:
many features of models not derivable from theory .
Need empirical evidence on:
which variables are actually relevant,
their lagged responses ( dynamic reactions ),
functional forms of connections ( non-linearity ),
structural breaks and unit roots ( non-stationarities ),
simultaneity (or exogeneity ), expectations, etc.
Almost always must be data-based on available sample:
need to discover what matters empirically .
Theory provides an object for modelling–but:
(A) embed that object in much more general formulation ;
(B) search for the simplest acceptable representation ;
(C) evaluate the findings.
How to accomplish? And what are its properties?
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Basis of approach

Data generation process (DGP):
joint density of all variables in economy
Impossible to accurately theorize about or model precisely
Too high dimensional and far too non-stationary .
Need to reduce to manageable size in ‘local DGP’ (LDGP):
the DGP in space of n variables {xt} being modelled
Theory of reduction explains derivation of LDGP:
joint density Dx(x1 . . .xT |θ).
Acts as DGP, but ‘parameter’ θ may be time varying
Knowing LDGP, can generate ‘look alike data’ for {xt}
which only deviate from actual data by unpredictable noise
Once {xt} chosen, cannot do better than know Dx(·)–
so the LDGP Dx(·) is the target for model selection:
need to relate theory model to that target.
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Discovery in economics

Discoveries in economics mainly from theory.
But all economic theories are:
(a) incomplete; (b) incorrect; and (c) mutable.
(a) Need strong ceteris paribus assumptions:
inappropriate in a non-stationary, evolving world .
(b) Consider an economic analysis which suggests:

y = f (z) (1)

where (k) y depend on n ‘explanatory’ variables z.
Form of f (·) in (1) depends on:
utility or loss functions of agents,
constraints they face, & information they possess.
Analyses arbitrarily assume: forms for f (·), that f (·) is
constant, that only z matters, & that the zs are ‘exogenous’.
Yet must aggregate across heterogeneous individuals
whose endowments shift over time, often abruptly.
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Theory evolves

(c) Economic analyses have changed the world, and our
understanding: from the ‘invisible hand’ in Adam Smith’s
Theory of Moral Sentiments (1759, p.350) onwards, theory
has progressed dramatically–
key insights into option pricing, auctions and contracts,
principal-agent and game theories, trust and moral hazard,
asymmetric information, institutions:
major impacts on market functioning, industrial,
and even political, organization.
But imagine imposing 1900’s economic theory in
empirical research today .
Much past applied econometrics research is forgotten:
discard the economic theory that it ‘quantified’ and
you discard the associated empirical evidence.
Hence fads & fashions, ‘cycles’ and ‘schools’ in economics.
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But the impossible is not possible

‘Why, sometimes I’ve believed as
many as six impossible things before
breakfast.’
Quote from the White Queen in
Lewis Carroll (1899), Through the
Looking-Glass, Macmillan.

If only it were just 6!
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Empirical econometrics

To establish ‘truth’ requires at least these 12
assumptions :
1. correct, comprehensive, & immutable economic theory;
2. correct, complete choice of all relevant variables & lags;
3. validity & relevance of all regressors & instruments;
4. precise functional forms for all variables;
5. absence of hidden dependencies;
6. all expectations formulations correct;
7. all parameters identified, constant over time, & invariant;
8. exact data measurements on every variable;
9. errors are ‘independent’ & homoscedastic;
10. error distributions constant over time;
11. appropriate estimator at relevant sample sizes;
12. valid and non-distortionary method of model selection.
If ‘truth’ is not on offer–what is?
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Data matters for empirical implementation

Sample of T observations, {xt} = {yt, zt}:
but no theory specification of a unit of time,
observations may be contaminated (measurement errors),
underlying processes integrated,
abrupt unanticipated shifts induce various forms of breaks.
All these aspects must be discovered empirically :
model selection is inevitable and ubiquitous.
So how to utilize economic analyses efficiently if cannot
impose theory empirically?
Answer: embed theory specification in vastly more
general empirical formulation.
‘Truth’ is not on offer, but theory-guided, congruent,
parsimonious encompassing models with parameters
invariant to relevant policies may be.
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Route map

(1) Discovery in general

(2) Automatic model extension

(3) Automatic model selection

(4) Automatic model estimation

(5) Automatic model evaluation

(6) Embedding theory models

(7) Excess numbers of variables N > T

(8) An empirical example: food expenditure

Conclusions
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Discovery in general

Discovery: learning something previously unknown.
Cannot know how to discover what is not known–
unlikely there is a ‘best’ way of doing so.
Many empirical discoveries have element of chance:
luck: Fleming–penicillin from a dirty petrie dish
serendipity: Becquerel–discovery of radioactivity
‘natural experiment’: Dicke–role of gluten in celiac disease
trial and error: Edison–incandescent lamp
brilliant intuition: Faraday–dynamo from electric shock
false theories: Kepler–regular solids for planetary laws
valid theories: Pasteur–germs not spontaneous generation
systematic exploration: Lavoisier–oxygen not phlogiston
careful observation: Harvey–circulation of blood
new instruments: Galileo–moons around Jupiter
self testing: Marshall–ulcers caused by Helicobacter pylori.
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Theoretical discoveries

Theoretical discoveries also important .
Classic examples include:
uniform motion: Galileo Galilei;
universal gravitation: Issac Newton;
electro-magnetic spectrum: Clerk Maxwell;
black-body radiation: Max Planck;
relativity: Albert Einstein;
quantum theory: Niels Bohr;
positron: Paul Dirac;
quark: Murray Gell-Mann.
Some ‘evidence based’; some ‘thought experiments’.
All required later independent evaluation.
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Discovery and evaluation

Science is both inductive and deductive.
Must distinguish between:
context of discovery –where ‘anything goes’, and
context of evaluation –rigorous attempts to refute.
However a discovery made, needs a warrant that it is ‘real’.
Methods of evaluation are subject-specific:
economics requires a theoretical interpretation consistent
with ‘mainstream theory’.
Accumulation and consolidation of evidence crucial :
data reduction a key attribute of science (think E = mc2).
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Common aspects of discovery

Seven aspects in common to above examples of discovery.
First , theoretical context , or framework of ideas.
Second , going outside existing state of knowledge.
Third , searching for something.
Fourth , recognition of significance of what is found.
Fifth , quantification of what is found.
Sixth , evaluating discovery to ascertain its ‘reality’.
Seven , parsimoniously summarize information acquired.
But science perforce is simple to general–
a slow and uncertain route to new knowledge.
Econometrics discovery need not be....
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Classical econometrics: covert discovery

Postulate:
yt = β′zt + εt, t = 1, . . . , T (2)

Aim to obtain ‘best’ estimate of the constant parameters β,
given the n correct variables, z, ‘independent’ of {εt} and
uncontaminated observations, T , with εt ∼IID

[
0, σ2ε

]
.

Many tests to ‘discover’ departures from assumptions
of (2), followed by recipes for ‘fixing’ them–
covert and unstructured empirical model discovery .

Model selection: discovering the ‘best’ model .
Starts from (2) assuming N ‘correct’ initial z, accurate data
over T , constant β and valid conditioning.
Aim to ‘discover’ the subset of relevant variables, z∗t .
Selected ‘best model’ may be poor approximation to LDGP:
almost never evaluated.
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Robust statistics: discovering the best sample

Same start (2), but aim to find a ‘robust’ estimate of a
constant β by selecting over T .
Worry about data contamination and outliers, so
select sample, T ∗, where outliers least in evidence,
given correct set of relevant variables z.
All other difficulties still need separate tests, and
must be fixed if found.
z rarely selected jointly with T ∗, so assumes z = z∗.

Similarly for non-parametric methods :
aim to discover ‘best’ functional form or distribution,
assuming correct z, no data contamination, constant β,
etc., all rarely checked.
Each assumes away what the others tackle .
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Automatic methods can outperform

Five key steps :
(1) define the framework–the target for modelling–LDGP;
(2) embed target in a general formulation–model extension;
(3) search for simplest acceptable representation–select;
(4) estimate parameters near unbiasedly;
(5) evaluate the findings.
[2] formulation : many candidate variables, long lag
lengths, non-linearities, outliers, and parameter shifts
[3] selection : handle more variables than observations, yet
deliver high success rates by multi-path search
[4] estimation : near unbiased estimates despite selection
[5] evaluation : automatically conduct a range of pertinent
tests of specification and mis-specification
Approach embodied in Autometrics : see Doornik (2009)
it only appears to be magic!
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Automatic empirical model discovery

Need to tackle all complications jointly.
Re-frame empirical modelling as discovery process:
part of a progressive research strategy.

Starting from T observations on N > n variables z,
aim to find β∗ for s lagged functions g(z∗t ) . . . g(z

∗
t−s) of a

subset of n variables z∗, jointly with T ∗ and {1{t=ti}}–
indicators for breaks, outliers etc.

Embeds initial economic analysis y = f(z),
but in a much more general initial model.

Globally, learning must be simple to general;
but locally, need not be.
General approach explained in Castle, Doornik and Hendry
(2010).
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Formulating a ‘good’ LDGP

Choice of n variables, {xt}, to analyze is fundamental:
determines the modelling target LDGP , Dx(·), and its
properties.
Prior reasoning, theoretical analysis, previous evidence,
historical and institutional knowledge all important.
Should be 90 + % of effort in an empirical analysis .
Aim to avoid complicated and non-constant LDGPs.
Crucial not to omit substantively important variables:
small set {xt} more likely to do so.
Given {xt}, have defined the target Dx(·) for (1).
Now embed that target in a general model formulation.
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Extensions for discovering a ‘good’ model

Second of five key steps : extensions of {xt} determine
how well LDGP is approximated .
Four main groups of automatic extensions :
additional candidate variables that ‘might’ be relevant;
lag formulation , implementing a sequential factorization ;
functional form transformations for non-linearity;
impulse-indicator saturation (IIS) for parameter
non-constancy and data contamination.
Must also handle mapping to non-integrated data,
conditional factorizations , and simultaneity.
‘Good choices’ facilitate locating a congruent
parsimonious-encompassing model of LDGP.
Congruence : matches the evidence on desired criteria;
parsimonious : as small a model as viable;
encompassing : explains the results of all other models.
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Selecting and evaluating the model

Extensions create the general unrestricted model (GUM).
The GUM should nest the LDGP, making it a special case;
reductions commence from GUM to locate a specific
model .
Selection is step (3):
search for the simplest acceptable representation .
Will address how that selection is done, and
(4) how near unbiased estimates obtained .

Finally, step (5):
evaluate the findings–and the selection process .
Includes tests of new aspects, such as
super exogeneity (essentially causality) for policy, and
parameter invariance (constancy across regimes).
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Implications for empirical modelling

Same seven stages as for discovery in general.
First , theoretical derivation of the relevant set x.
Second , going outside current view by automatic
creation of a general model from x embedding y = f(z).
Third , search by automatic selection to find viable
representations: too large for manual labor.
Fourth , criteria to recognize when search is completed:
congruent parsimonious-encompassing model .
Fifth , quantification of the outcome: translated into
unbiasedly estimating the resulting model .
Sixth , evaluate discovery to check its ‘reality:
new data, new tests or new procedures .
Can also evaluate the selection process itself.
Seventh , summarize vast information set in
parsimonious but undominated model .
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Route map

(1) Discovery in general

(2) Automatic model extension

(3) Automatic model selection

(4) Automatic model estimation

(5) Automatic model evaluation

(6) Embedding theory models

(7) Excess numbers of variables N > T

(8) An empirical example: food expenditure

Conclusions
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Extensions outside standard information

Extensions determine how well LDGP is approximated
Create three extensions automatically :
(i) lag formulation to implement sequential factorization ;
(ii) functional form transformations for non-linearity ;
(iii) impulse-indicator saturation (IIS) for parameter
non-constancy and data contamination .
(i) Create s lags xt . . .xt−s to formulate general linear model:

yt = β0 +
s∑

i=1

λiyt−i +
r∑

i=1

s∑

j=0

βi,jzi,t−j + εt (3)

xt = (yt, zt) could also be modelled as a system:

xt = γ +
s∑

j=1

Γjxt−j + εt (4)

We focus on single equations, but systems can be handled.
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Automatic non-linear extensions

Test for non-linearity in general linear model by
low-dimensional portmanteau test in Castle and Hendry
(2010b) (cubics of principal components wt of the zt).
(ii) If reject, create g(wt), otherwise g(zt) = zt: presently,
implemented general cubics with exponential functions.
Number of potential regressors for cubic polynomials is:

MK = K (K + 1) (K + 5) /6.

Explosion in number of terms as K = r × (s+ 1) increases:
K 1 2 3 4 5 10 15 20 30 40

MK 3 9 19 30 55 285 679 1539 5455 12300

Quickly reach huge MK : but only 3K if use wk
i,t−j.

(Investigating squashing functions , to better approximate
non-linearity in economics, suggested by Hal White)
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Impulse-indicator saturation

(iii) To tackle multiple breaks & data contamination (outliers),
add T impulse indicators to candidates for T observations.

Consider yi ∼ IID
[
µ, σ2ε

]
for i = 1, . . . , T

µ is parameter of interest
Uncertain of outliers, so add T indicators 1{t=ti}

to set of candidate regressors.
First, include half of indicators, record significant:
just ‘dummying out’ T/2 observations for estimating µ
Then omit, include other half, record again.
Combine sub-sample indicators, & select significant.
αT indicators selected on average at significance level α
Feasible ‘split-sample’ impulse-indicator saturation
(IIS) algorithm : see Hendry, Johansen and Santos (2008)
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Dynamic generalizations

Johansen and Nielsen (2009) extend IIS to both stationary
and unit-root autoregressions
When distribution is symmetric, adding T
impulse-indicators to a regression with n variables,
coefficient β (not selected) and second moment Σ:

T 1/2(β̃ − β)
D→ Nn

[
0, σ2εΣ

−1Ωβ

]

Efficiency of IIS estimator β̃ with respect to OLS β̂

measured by Ωβ depends on cα and distribution

Must lose efficiency under null: but small loss αT–
only 1% at α = 1/T if T = 100, despite T extra candidates.
Potential for major gain under alternatives of breaks
and/or data contamination: variant of robust estimation
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Structural break example
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0

5

10

Y Fitted 
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−2
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2
scaled residuals

Size of the break is 10 standard errors at 0.75T

There are no outliers in this mis-specified model
as all residuals ∈ [−2, 2] SDs:

outliers 6= structural breaks

step-wise regression has zero power
Let’s see what Autometrics reports
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‘Split-sample’ search in IIS
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Specification of GUM

Most major formulation decisions now made:
which r variables ( wt, after transforming zt);
their lag lengths ( s);
functional forms (cubics);
structural breaks (any number, anywhere).
Leads to general unrestricted model (GUM):

yt =
r∑

i=1

s∑

j=0

βi,jzi,t−j +
r∑

i=1

s∑

j=0

κi,jwi,t−j +
r∑

i=1

s∑

j=0

θi,jw
2
i,t−j

+

r∑

i=1

s∑

j=0

γi,jw
3
i,t−j +

s∑

j=1

λjyt−j +

T∑

i=1

δi1{i=t} + εt

K = 4r(s+ 1) + s potential regressors, plus T indicators:
close to what I showed live earlier .
Bound to have N > T : consider exogeneity later.
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Route map

(1) Discovery in general

(2) Automatic model extension

(3) Automatic model selection

(4) Automatic model estimation

(5) Automatic model evaluation

(6) Embedding theory models

(7) Excess numbers of variables N > T

(8) An empirical example: food expenditure

Conclusions
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How to judge performance?

Many ways to judge success of selection algorithms
(A) Maximizing the goodness of fit

Traditional criterion for fitting a given model, but does
not lead to useful selections

(B) Matching a theory-derived specification
Widely used, and must work well if LDGP ' theory, but
otherwise need not

(C) Frequency of discovery of the LDGP . Overly
demanding–may be nearly impossible even if
commenced from LDGP (eg |t| < 0.1)

(D) Improves inference about parameters
Seek small, accurate, uncertainty regions around
parameters of interest–but ‘oracle principle’ invalid
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Operational criteria

(E) Improved forecasting over other methods
Many contenders: other selections, factors, model
averages, robust devices...but forecasting is different

(F) Works for ‘realistic’ LDGPs
Unclear what those are–but many claimed contenders.

(G) Relative frequency of recovering LDGP starting
from GUM as against starting from LDGP
Costs of search additional to commencing from LDGP

(H) Operating characteristics match theory
Nominal null rejection frequency matches actual;
retained parameters of interest unbiasedly estimated

(I) Find well-specified undominated model of LDGP
‘Internal criterion’–algorithm could not do better
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Which criteria?

(G), (H) and (I) are main basis: aim to satisfy all three
Two costs of selection: costs of inference and search
First inevitable if tests have non-zero null and non-unit
rejection frequencies under alternative
Applies even if commence from LDGP.
Measure costs of inference by RMSE of selecting or
conducting inference on LDGP
When a GUM nests the LDGP, additional costs of search:
calculate by increase in RMSEs for relevant variables when
starting from the GUM as against the LDGP, plus those for
retained irrelevant variables
Also see if Autometrics ‘outperforms’ other automatic
methods:
Information Criteria, Step-wise, Lasso ....
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Model selection

To successfully determine what matters and how it enters,
all main determinants must be included :
omitting key variables adversely affects selected models.

Especially forceful issue when data are ‘wide sense
non-stationary’–both integrated and not time invariant

‘Catch 22’ – have more variables N than observations T :
so all cannot be entered from the outset .
Requires expanding as well as contracting searches
Have to select: not an option just to estimate.

To resolve conundrum, analysis proceeds in 5 steps .
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Five main steps, then evaluation

1] ‘1-cut’ selection for orthogonal designs with N << T .

2] Selection matters, so consider effects of bias correction
on distributions of estimates

3] Compare ‘1-cut’ with Autometrics , which works in
non-orthogonal models, still with N << T .

4] More variables N than observations T follows as IIS .

5] Multiple breaks , using IIS

Having resolved selection, next consider evaluation:

6] Impact of diagnostic testing

7] Role of encompassing in automatic selection

8] Testing exogeneity and invariance
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Understanding model selection

Consider a perfectly orthogonal regression model:

yt =
∑N

i=1
βizi,t + εt (5)

E[zi,tzj,t] = λi,i for i = j & 0 ∀i 6= j, εt ∼ IN[0, σ2ε ] and T >> N .

Order the N sample t2-statistics testing H0: βj = 0:

t2(N) ≥ t2(N−1) ≥ · · · ≥ t2(1)

Cut-off m between included and excluded variables is:
t2(m) ≥ c2α > t2(m−1)

Larger values retained: all others eliminated.
Only one decision needed even for N ≥ 1000:
‘repeated testing’ does not occur, and
‘goodness of fit’ is never considered.
Maintain average false null retention at one variable by
α ≤ 1/N , with α declining as T → ∞
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Interpretation

Path search gives impression of ‘repeated testing’.
Confused with selecting from 2N possible models
(here 21000 = 10301, an impossible task).
We are selecting variables , not models, & only N variables.
But selection matters, as only retain ‘significant’
outcomes.
Sampling variation also entails retain irrelevant, or miss
relevant, by chance near selection margin.
Conditional on selecting, estimates biased away from
origin: but can bias correct as know cα.
Small efficiency cost under null for examining many
candidate regressors, even N >> T .
Almost as good as commencing from LDGP at same cα.
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Autometrics improves on previous algorithms

Search paths: Autometrics examines whole search
space; discards irrelevant routes systematically.
Likelihood-based: Autometrics implemented in
likelihood framework.
Efficiency: Autometrics improves computational
efficiency: avoids repeated estimation & diagnostic
testing, remembers terminal models.
Structured: Autometrics separates estimation criterion,
search algorithm, evaluation, & termination decision.
Generality: Autometrics can handle N > T .

If GUM is congruent, so are all terminals:
undominated, mutually-encompassing representations.
If several terminal models, all reported: can combine, or
one selected (by, e.g., Schwarz, 1978, criterion).
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Autometrics tree search

Search follows branches till no insignificant variables;
tests for congruence and parsimonious encompassing;
backtracks if either fails, till first non-rejection found.
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Selecting by Autometrics

Even when 1-cut applicable, little loss, and often a
gain, from using path-search algorithm Autometrics .
Autometrics applicable to non-orthogonal problems,
and N > T .
‘Gauge ’ (average retention rate of irrelevant variables)
close to α.
‘Potency ’ (average retention rate of relevant variables)
near theory value for a 1-off test.
Goodness-of-fit not directly used to select models & no
attempt to ‘prove’ that a given set of variables matters, but
choice of cα affects R2 and n through retention by |t(n)| ≥ cα.

Conclude: ‘repeated testing’ is not a concern.
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Moving from 1-cut to Autometrics

For more detail about selection outcomes, we consider 10
experiments with N = 10 candidate regressors and T = 75
based on the design in Castle, Qin and Reed (2009):

yt = β0 + β1x1,t + · · · + β10x10,t + εt, (6)

xt ∼ IN10 [0, I10] , (7)

εt ∼ IN
[
0,
(
λ×

√
n
)2]

, n = 1, . . . , 10, t = 1, . . . , T (8)

where x′
t = (x1,t, · · · , x10,t), fixed across replications.

Equations (6)–(8) specify 10 different DGPs, indexed by n,
each having n relevant variables with β1 = · · · = βn = 1 and
10− n irrelevant variables (βn+1 = · · · = β10 = 0).
Throughout, they set β0 = 5.
λ = 0.4 is their R2 = 0.9 experiment.
Table 1 reports the non-centralities, ψ.
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Experimental design

n 1 2 3 4 5 6 7 8 9 10
ψ1 . . . ψn 21.6 15.3 12.5 10.8 9.7 8.8 8.2 7.7 7.2 6.9

Table 1: Non-centralities for simulation experiments (6)–(8).

The GUM is the same for all 10 DGPs:
yt = β0 + β1x1,t + · · ·+ β10x10,t + ut.

We first investigate how the general search algorithm
Autometrics, without diagnostic checking, performs
relative to 1-cut.
Comparative gauges are recorded in figure 43.
1-cut gauge is very accurate, and
Autometrics is quite close, especially for α = 0.01.
Potency ratios are unity for all significance levels.
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Gauges for 1-cut & Autometrics
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Calculating MSEs

Also report MSEs after model selection.
β̂k,i is OLS estimate of coefficient on xk,t in GUM for

replication i. β̃k,i is OLS estimate after model selection

β̃k,i = 0 when xk,t not selected in final model.
Calculate following MSEs:

MSEk = 1
M

∑M
i=1

(
β̂k,i − βk

)2
,

UMSEk = 1
M

∑M
i=1

(
β̃k,i − βk

)2
,

CMSEk =

∑M

i=1

[
(β̃k,i−βk)

2
·1(β̃k,i 6=0)

]

∑M

i=1 1(β̃k,i 6=0)

,
(
β2k if

∑M
i=1 1(β̃k,i 6=0)

= 0
)

Unconditional MSE (UMSE):
sets β̃k,i = 0 when a variable is not selected.
Conditional MSE (CMSE) is over retained variables only.
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MSEs for 1-cut & Autometrics

Figure 46 records ratios of MSEs of Autometrics selection to
1-cut for both unconditional and conditional distributions,
but with no diagnostic tests and no bias correction.
Lines labelled Relevant report the ratios of average MSEs
over all relevant variables for a given n.
Lines labelled Irrelevant are based on average MSEs of
irrelevant variables for each DGP (none when n = 10).
Unconditionally, ratios are close to 1 for irrelevant variables;
but there is some advantage to using Autometrics for
relevant variables, as ratios are uniformly less than 1.
Benefits to selection are largest when there are few
relevant variables that are highly significant.
Conditionally, Autometrics outperforms 1-cut in most cases.
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Ratios of MSEs for Autometrics to 1-cut
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Selecting non-linear models

Transpires there are four major sub-problems :
(A) specify general form of non-linearity
(B) non-normality : non-linear functions capture outliers
(C) excess numbers of irrelevant variables
(D) potentially more variables than observations
Have solutions to all four sub-problems :
(A) investigator’s preferred general function , simplified
by encompassing tests against specific (ogive) forms
(B) remove outliers by IIS
(C) super-conservative selection strategy
(D) multi-stage ‘combinatorial selection’ for N > T

Automatic algorithm for up to cubic polynomials with
polynomials times exponentials in Castle and Hendry
(2010a).
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Autometrics ’ IIS outcomes

α 1% 0.1%
no IIS IIS no IIS IIS

ave. gauge 1.22% 1.43% 0.12% 0.08%
ave. potency 99.98% 99.97% 99.87% 99.82%

Table 2: Gauge and potency averages over n = 1, . . . , 10, with
and without IIS.

Figure 49 records ratio of MSEs without saturation to with.
Under null, indicator saturation at tight α has small costs, but
MSEs of irrelevant variables are larger than without IIS at 1%.
Correlations between dummies and retained irrelevant variables
might increase MSE.
At α = 0.1%, little impact on MSE as so few dummies retained:
impulse-indicator saturation can even improve MSE under null.
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Ratios of MSEs without/with IIS
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Route map

(1) Discovery in general

(2) Automatic model extension

(3) Automatic model selection

(4) Automatic model estimation

(5) Automatic model evaluation

(6) Embedding theory models

(7) Excess numbers of variables N > T

(8) An empirical example: food expenditure

Conclusions
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Automatic bias corrections

Selection matters as only retain ‘significant’ variables:
so correct final estimates for selection
Convenient approximation that:

t
β̂
=

β̂

σ̂
β̂

' β̂

σ
β̂

∼ N

[
β

σ
β̂

, 1

]
= N [ψ, 1]

when non-centrality of t-test is ψ = β/σ
β̂

Use Gaussian approximation (IIS helps ensure):

φ (w) =
1√
2π

exp

(
−1

2
w2

)
where Φ (w) =

∫ w

−∞
φ (x)dx

Doubly-truncated distribution–expected t-value is:

E
[
|t
β̂
| | |t

β̂
| > cα;ψ

]
= ψ∗ (9)

so observed |t|-value is unbiased estimator for ψ∗
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Truncation correction

Sample selection induces:

ψ∗ = ψ +
φ(cα − ψ)− φ(−cα − ψ)

1− Φ(cα − ψ) + Φ(−cα − ψ)
= ψ + r (ψ, cα) (10)

Correct β̃ once ψ is known: for β > 0, say:

E
[
β̃ | β̃ ≥ σ

β̃
cα

]
= β

(
1 +

r (ψ, cα)

ψ

)
= β

(
ψ∗

ψ

)
(11)

Let:
ψ̃ = t

β̃
− r

(
t
β̃
, cα

)
, then ˜̃

ψ = t
β̃
− r

(
ψ̃, cα

)
(12)

leading to the bias-corrected parameter estimate:

˜̃
β = β̃

(
˜̃
ψ/t

β̃

)
(13)

from inverting (11).
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Implementing bias correction

Bias corrects closely, not exactly, for relevant: over-corrects
for some t-values.
Some increase in MSEs of relevant variables.
Correction exacerbates downward bias in unconditional
estimates of relevant coefficients & increases MSEs slightly.
No impact on ‘bias’ of estimated parameters of irrelevant
variables as their βi = 0, so unbiased with or without
selection
But remarkable decrease in MSEs of irrelevant variables
First ‘free lunch’ of new approach.
Obvious why in retrospect–most correction for |t| near cα,
which occurs for retained irrelevant variables.
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Simulation MSEs

Impact of bias corrections on retained irrelevant and
relevant variables, for N = 1000 and n = 10 in (5).
α 1% 0.1% 1% 0.1%

average CMSE over average CMSE over
990 irrelevant variables 10 relevant variables

uncorrected β̃ 0.84 1.23 1.0 1.4
β after correction 0.38 0.60 1.2 1.3

Table 3: Average CMSEs, times 100, for retained rele-
vant and irrelevant variables (excluding β0), with and
without bias correction.
Greatly reduces MSEs of irrelevant variables in
both unconditional and conditional distributions.
Coefficients of retained variables with |t| ≤ cα are not
bias corrected–insignificant estimates set to zero.

David F. Hendry Empirical Model Discovery and Theory Evalua tion – p.54/113



Bias correcting conditional distributions at 5%
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Implications

If regress yt on exogenous {zj,t} (j = 1, . . . , N) over
t = 1, . . . , T & select {zj,t} (j = 1, . . . , n) by Gets, then in:

ŷt =
n∑

j=1

β̂j
(SE)

zj,t + ε̂t

σ̂ε

(14)

a. Estimates near unbiased , E[β̂j ] ' βj, for constant
parameter βj in LDGP when bias-corrected;
b. SEs accurate for SDs of estimated LDGP equation:
V[β̂j ] ' V[β̃j ] for that β̃j estimated in LDGP equation;
c. Estimated equation standard error nearly unbiased
(E[σ̂ε] ' σε);
d. Relevant variables retained with almost same
probabilities as commencing from LDGP ; and
e. Irrelevant variables eliminated at rate (1− α)(N − n)
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Resurrected conventional econometrics

Already amazing advances–but:
1] Assumed all β1 . . . βn, σε were constant in LDGP;
2] Assumed {εt} was approximately normal;
3] Assumed N << T ;
4] Assumed {zj,t} were (weakly) exogenous;
5] Assumed (14) was linear in {zj,t};
6] Assumed zj,t rather than E [zj,t] mattered ;

7] Assumed (14) was identified within LDGP system .
All need to be tested–and all have been solved:
first examine impact of automatic evaluation
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Route map

(1) Discovery in general

(2) Automatic model extension

(3) Automatic model selection

(4) Automatic model estimation

(5) Automatic model evaluation

(6) Embedding theory models

(7) Excess numbers of variables N > T

(8) An empirical example: food expenditure

Conclusions
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Model evaluation criteria

Given transformed system version of (3):
Λ (L)h (y)t = B (L)g (z)t + Γdt + vt (15)

where vt ∼ Dn1 [0,Σv] when x′
t = (y′

t : z
′
t), (n1 : n2)

[1] homoscedastic innovation vt

[2] weak exogeneity of zt for parameters of interest µ
[3] constant, invariant parameter µ
[4] data-admissible formulations on accurate observations
[5] theory consistent, identifiable structures
[6] encompass rival models
Exhaustive nulls to test–but many alternatives
Models which satisfy first four are congruent
Encompassing, congruent, theory-consistent model
satisfies all six criteria
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Integrated data

Autometrics conducts inferences for I(0)
Most selection tests remain valid:
see Sims, Stock and Watson (1990)
Only tests for a unit root need non-standard critical
values

Implemented PcGive cointegration test in PcGets ‘Quick
Modeler’

Most diagnostic tests also valid for integrated series:
see Wooldridge (1999)

Heteroscedasticity tests an exception:
powers of variables then behave oddly
see Caceres (2007)
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Role of mis-specification testing

Under null of congruent GUM, Figure 62 compares gauges
for Autometrics with diagnostic checking on vs. off :

yt =
∑N

i=1
βizi,t + εt for εt ∼ IN[0, σ2ε ] (16)

T = 100, n = 1, . . . , 10 = N ;βk = 0 for k > n;R2 = 0.9.
‘Gauge ’ is average retention rate of irrelevant variables
(should be close to α).
‘Potency ’ is average retention rate of relevant variables
(should be near theory power for a 1-off test).
Gauge is close to α if diagnostic tests not checked.
Gauge is larger than α with diagnostics on , when checking
to ensure a congruent reduction.
Difference seems due to retaining insignificant irrelevant
variables which proxy chance departures from null of
mis-specification tests.
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Gauges with diagnostic tests off & on
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Impact of mis-specification testing on MSEs

Figure 64 records ratios of MSEs in the unconditional
distribution (UMSEs) and conditional (CMSEs) when
diagnostic tests switched off to on, averaging within
relevant and irrelevant variables.
Switching diagnostics off generally improves UMSEs, but
worsens results conditionally, with the impact coming
through the irrelevant variables.
Switching diagnostics off leads to fewer irrelevant
regressors being retained overall, improving UMSEs, but
retained irrelevant variables are now more significant than
with diagnostics on.
Impact is largest at tight significance levels:
at 10%, MSE ratios so close to unity they are not plotted.
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Ratios of MSEs for diagnostic tests off & on
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Role of encompassing

Variables removed only when new model is a valid
reduction of GUM.
Reduction fails if result does not parsimoniously
encompass GUM at cα: (see Hendry, 1995, §14.6).
If so, variable retained despite being insignificant on t-test,
as in Doornik (2008).
Autometrics without encompassing loses both gauge
and potency :
gauge is the average retention rate of irrelevant variables;
potency is average retention rate of relevant variables
Autometrics with encompassing is well behaved :
gauge is close to nominal rejection frequency α.
potency is close to theory maximum of 1-off t-test.
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Simulating Autometrics on Hoover–Perez

Hoover and Perez (1999) experiments:

HP7 y7,t = 0.75y7,t−1 + 1.33x11,t − 0.9975x11,t−1 + 6.44ut R2 = 0.58

HP8 y8,t = 0.75y8,t−1 − 0.046x3,t + 0.0345x3,t−1 + 0.073λut R
2 = 0.93

where ut ∼ IN[0, 1]; xi,t−j are US macro data

The GUM has 3 DGP variables plus 37 irrelevant.
Table 4 shows results for range of values of λ and α in HP8
(they set λ = 1).
Later consider 141 irrelevant, larger than T = 139.

David F. Hendry Empirical Model Discovery and Theory Evalua tion – p.66/113



Simulations for encompassing

Autometrics Autometrics
with encompassing no encompassing

α λ Gauge Potency Gauge Potency
0.1 50 0.093 0.441 0.056 0.402
0.05 50 0.055 0.405 0.021 0.364
0.01 50 0.014 0.357 0.002 0.337
0.1 10 0.096 0.940 0.062 0.904
0.05 10 0.057 0.935 0.031 0.832
0.01 10 0.017 0.895 0.002 0.630
0.1 1 0.093 1.000 0.050 1.000
0.05 1 0.055 1.000 0.019 1.000
0.01 1 0.014 1.000 0.002 0.999

Table 4: HP8 with M = 10000 and T = 139.
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Testing super exogeneity

Parameter invariance essential in policy models :
else mis-predict under regime shifts.
Super exogeneity combines parameter invariance with
valid conditioning so crucial for economic policy.
New automatic test in Hendry and Santos (2010):
impulse-indicator saturation in marginal models,
retain all significant outcomes and
test their relevance in conditional model
No ex ante knowledge of timing or magnitudes of breaks:
need not know DGP of marginal variables
Test has correct size under null of super exogeneity
for a range of sizes of marginal-model saturation tests
Power to detect failures of super exogeneity when
location shifts in marginal models
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Implications of selection

Despite selecting from N = 1000 potential variables
when only n = 10 are relevant:
(1) nearly unbiased estimates of coefficients and
equation standard errors can be obtained;
(2) little loss of efficiency from checking many
irrelevant variables;
(3) some loss from not retaining relevant variables at
large cα;
(4) huge gain by not commencing from an
under-specified model;
(5) even works well for ‘fat-tailed’ errors at tight α when
IIS used–see below .
Now embed theory models for non-orthogonal data sets
with N > T .
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Route map

(1) Discovery in general

(2) Automatic model extension

(3) Automatic model selection

(4) Automatic model estimation

(5) Automatic model evaluation

(6) Embedding theory models

(7) Excess numbers of variables N > T

(8) An empirical example: food expenditure

Conclusions
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Retaining economic theory insights

Approach is not atheoretic .
Theory formulations should be embedded in GUM,
can be retained without selection.
Call such imposition ‘forcing’ variables–ensures they are
retained, but does not guarantee they will be significant.
Can also ensure theory-derived signs of long-run relation
maintained, if not significantly rejected by the evidence.
But much observed data variability in economics is
due to features absent from most economic theories:
which empirical models must handle .
Extension of LDGP candidates, xt, in GUM allows theory
formulation as special case, yet protects against
contaminating influences (like outliers) absent from theory.
‘Extras’ can be selected at tight significance levels.
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Four possible economic theory outcomes

1] Theory exactly correct :
all aspects significant with anticipated signs,
no other variables kept.
2] Theory only part of explanation :
all aspects significant with anticipated signs,
but other variables also kept as substantively relevant.
3] Theory partially correct :
only some aspects significant with anticipated signs,
and other variables also kept as substantively relevant.
4] Theory not correct :
no aspects significant and
other variables do all explanation.
Consider these in turn.
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Theory exactly correct

Theory specifies correct set of n relevant variables, zt, with
parameters β:

yt = β′zt + εt (17)
where εt ∼ IN[0, σ2ε ], independently of zt. Then:

β̂ = β +

(
T∑

t=1

ztz
′
t

)−1 T∑

t=1

ztεt ∼ Nn


0, σ2ε

(
T∑

t=1

ztz
′
t

)−1

 (18)

Next, zt ‘forced’ to be retained during model selection over
second set of k irrelevant candidate variables, wt, with
coefficients γ = 0 when (k + n) << T , so GUM is:

yt = β′zt + γ ′wt + νt (19)

Orthogonalize zt and wt by:

wt = Γ̂zt + ut (20)
Then as γ = 0:

yt = β′zt + γ ′wt + νt = β′zt + γ ′ut + νt (21)
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Distributions of forced estimates

Consequently:
β̃ − β

γ̃


=



∑T

t=1
ztz

′

t

∑T
t=1

ztu
′

t
∑T

t=1
utz

′

t

∑T
t=1

utu
′

t




−1

∑T

t=1
ztνt

∑T
t=1

utνt




∼ Nn+k





 0

0


 , σ2ε




(
T∑
t=1

ztz
′

t

)−1

0

0

(
T∑
t=1

utu
′

t

)−1





 (22)

as
∑T

t=1 ztu
′
t ' 0, so distribution of β̃ in (22) identical to

that of β̂ in (18): unaffected by model selection.
Only costs of selection are:
(a) chance retentions of some ut from selection; and
(b) impact on estimated distribution of β̃ through σ̃2ε .
Can be offset by bias correction.
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Theory only part of explanation

Different when theory model is only part of explanation :
defined as all aspects significant with anticipated signs,
but other variables also kept as substantively relevant.
Two distinct forms of under-specification:
a] omitting relevant functions or lags of variables in LDGP;
avoided by sufficiently general initial model:
b] omitting relevant variables, xt, from the DGP;
induces less useful LDGP–hard to avoid if xt unknown.
In a], γ 6= 0, as zt and ut orthogonal in (23), coefficient of
former is β + γ ′Γ̂, which is estimated if (17) is simply fitted
to the data: but may be significant with anticipated signs.
In b], when (19) nests LDGP, but xt omitted from DGP,
selection can substantively improve the final model:
(see Castle and Hendry, 2010c), as we will show.
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Some of theory part of explanation

Next, when the theory is only partially correct :
some aspects significant with anticipated signs,
but other aspects not significant, or ‘wrong’ signed,
with other variables also kept as substantively relevant.
Under alternative, γ 6= 0, estimating (17) will result in
biased, inefficient, possibly non-constant, estimates as:

yt = β′zt + γ ′
(
Γ̂zt + ut

)
+ νt =

(
β + γ ′Γ̂

)′
zt + γ ′ut + νt (23)

Now forcing zt when selecting from (23) will deliver an
incorrect estimate of β, but some of the ut will be correctly
retained, so an implied estimate of β can be derived from
β + γ ′Γ̂, γ̃ and Γ̂. A better estimate of σ̃2ν should result.
Selection can also help when relevant variables, xt,
omitted from DGP and breaks occur.
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Breaks in included and excluded variables

DGP:
yt = β′

1zt + β′
2xt + εt, εt ∼ IN

[
0, σ2ε

]
(24)

(
zt

xt

)
∼ INk1+k2

[(
µt

δt

)
,

(
Σ11 Σ12

Σ21 Σ22

)]
(25)

Both sets of variables have one-off location shifts:

µt =

{
µ1 t < T 0

µ2 t ≥ T 0
and δt =

{
δ1 t < T ∗

δ2 t ≥ T ∗
(26)

The LDGP is mis-specified as:

yt = γ0 + γ ′
1zt + et (27)

so xt is unknowingly omitted, and (27) is also the model.
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Breaks in included and excluded variables

Relationship between zt and xt is:

xt = (δt −Ψµt) +Ψzt + ut (28)

where E[ztu
′
t] = 0 and Ψ = Σ21Σ

−1
11 , giving a reduced LDGP:

yt = β′
2 (δt −Ψµt) +

(
β′
1 + β′

2Ψ
)
zt + β′

2ut + εt. (29)

Full sample estimation of (27) yields:

(
γ̃0
γ̃1

)
=

(
T

∑T
t=1 z

′
t∑T

t=1 zt
∑T

t=1 ztz
′
t

)−1( ∑T
t=1 yt∑T

t=1 ztyt

)
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Breaks in included and excluded variables

E




 γ̃0

γ̃1




 '



(
s
′ − r

′
H

−1
(
Σ12 + λ (1− κ) (µ1 − µ2) (δ1 − δ2)

′
))

β2

β1 +H
−1
(
Σ12 + λ (1− κ) (µ1 − µ2) (δ1 − δ2)

′
)
β2




=


 γ0,p

γ1,p




where

λ =
(
T 0 − 1

)
/T ;

κ = (T ∗ − 1) /T ;

r = (λµ1 + (1− λ)µ2);

s = (κδ1 + (1− κ) δ2);

M− rs
′ = λ (1− κ) (µ1 − µ2)

(
δ′1 − δ′2

)
;

H = Σ11 + λ (1− λ) (µ1 − µ2) (µ1 − µ2)
′.
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Implications

Constant zt, break in xt

(
γ0,p
γ1,p

)

µ1=µ2

=

( (
(κδ1 + (1− κ) δ2)

′ − µ′Ψ′
)
β2

(β1 +Ψ′β2)

)
(30)

Slope coefficient is constant;
Intercept shifts whenever omitted variables shift;
Residual var. inflated κ (1− κ)β′

2 (δ2 − δ1) (δ1 − δ2)
′
β2

Break in zt, constant xt

(
γ0,p
γ1,p

)

δ1=δ2

=

( (
δ′ − r′H−1Σ12

)
β2

β1 +H−1Σ12β2

)
(31)

Slope and intercept shifts – biases in estimated
coefficients lead to induced non-constancy

David F. Hendry Empirical Model Discovery and Theory Evalua tion – p.80/113



Impulse-indicator saturation

IIS removes location-shift induced non-constancies in
intercepts and equation standard errors.

yt = β′
2 (δt −Ψµt) +

(
β′
1 + β′

2Ψ
)
zt + β′

2ut + εt

Inconsistent coefficient of
(
β′
1 + β′

2Ψ
)

on zt: ‘classical’
omitted-variables bias problem.

IIS can correct non-constancy of intercept, and hence
changes in estimated slope and goodness of fit.

‘Optimal’ solution to intercept shift is step dummy, but
infeasible – not known that xt is relevant.
Simulation of scalar case with break in zt and xt of 5σε at
T 0 = 81, T ∗ = 91 shown in Figure 82.
IIS mimics step-shift dummy for induced shifts.
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Non-constant zt and xt, δ2 = 5, µ2 = −5.
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Theory not part of explanation

Finally, theory is now completely incorrect :
no aspects significant and other variables do all
explanation.
Despite forcing zt, β = 0, but interpretation awkward as
coefficient of zt is γ ′Γ̂.
Win-win situation: theory kept if valid and complete;
yet learn when it is not correct–
empirical model discovery embedding theory
evaluation.
Interesting case is when N > T for N candidates,
so can automatic model selection work then?
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Route map

(1) Discovery in general

(2) Automatic model extension

(3) Automatic model selection

(4) Automatic model estimation

(5) Automatic model evaluation

(6) Embedding theory models

(7) Excess numbers of variables N > T

(8) An empirical example: food expenditure

Conclusions
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As many candidate variables as observations

Analytic approach to understanding IIS applies for N = T IID
mutually orthogonal candidate regressors under the null.
Add first N/2 and select at significance level α = 1/T = 1/N .
Record which were significant, and drop all.
Now add second block of N/2, again select at significance
level α = 1/N , and record which are significant.
Finally, combine recorded variables from the two stages
(if any), and select again at significance level α = 1/N .
At both sub-steps, on average αN/2 = 1/2 a variable will be
retained by chance, so on average αN = 1 from the
combined stage.
Again 99% efficient under the null at eliminating irrelevant
variables–lose one degree of freedom on average.
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More candidate variables than observations

If also have relevant variables to be retained, and N > T ,
orthogonalize them with respect to the rest.
As N > T , divide in more sub-blocks, setting α = 1/N .
Basic model retains desired sub-set of n variables at every
stage, and only selects over putative irrelevant variables at
stringent significance level:
under the null, has no impact on estimated coefficients
of relevant variables, or their distributions .
Thus, almost costless to check even large numbers of
candidate variables:
huge benefits if initial specification incorrect but
enlarged GUM nests LDGP.
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IIS for multiple breaks

DGP: D1: y1,t = γ (IT−19 + · · · + IT ) + ut, ut ∼ N[0, 1]
D2: y3,t = γ (I1 + I6 + I11 + · · · ) + ut, ut ∼ N[0, 1]

GUM: forced constant and T indicators, T = 100, M = 1000

D1
1% nominal size γ = 0 γ = 1 γ = 2 γ = 3 γ = 4 γ = 5
Gauge % 1.5 1.2 0.9 0.3 0.7 1.1
Potency % — 4.6 25.6 52.6 86.3 99.0
DGP found % 29.0 0.0 0.0 0.0 8.1 36.8

D2
1% nominal size γ = 0 γ = 1 γ = 2 γ = 3 γ = 4 γ = 5
Gauge % 1.5 1.0 0.4 0.3 1.0 0.8
Potency % — 3.5 7.9 24.2 67.1 90.2
DGP found % 29.0 0.0 0.0 0.0 3.9 24.2

Table 5: IIS for breaks in Autometrics
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Hoover–Perez experiments

T = 139, 3 relevant and 37 irrelevant variables
Hoover–Perez step-wise Autometrics
HP7 HP8 HP7 HP8 HP7 HP8

1% nominal size
Gauge % 3.0∗ 0.9∗ 0.9 3.1 1.6 1.6

Potency % 94.0 99.9 100.0 53.3 99.2 100.0
DGP found % 24.6 78.0 71.6 22.0 68.3 68.8

∗ Only counting significant terms (but tiebreaker is best-fitting model)

T = 139, 3 relevant and 141 irrelevant variables
step-wise Autometrics

HP7 HP8 HP7 HP8
0.1% nominal size

Gauge % 0.1 0.7 0.3 0.1
Potency % 99.7 40.3 97.4 100.0
DGP found % 87.4 9.0 82.9 90.2

Large increase in probability of locating DGP relative to α = 0.01
not monotonic in α–so should not select by ‘goodness of fit’
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Model selection in ADL models

The DGP is given by:

yt = 1.5yt−1 − 0.8yt−2 +
6∑

j=1

(
βjxj,t − βjxj,t−1

)
+ εt (32)

where εt ∼ IN [0, 1] and xt = (x1,t, . . . , x6,t)
′ is generated by:

xt = ρxt−1 + vt where vt ∼ IN6 [0,Ω] (33)

with ρ = 0.5, ωkk = 1, and ωkj = 0.5,∀k 6= j.
n = 0, 1, 2, 4, 6, 8, 10, 12, 14 relevant regressors, with
βk = ψk/

√
T = 8/

√
12T , so is just over 2.

The DGP has negative relations between pairs of
exogenous regressors (first differences).
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Modelling an ADL

The main difficulty for an ADL is choosing the lag length.
Here, there are 7 GUMs, given by s = 0, 1, 2, 5, 10, 15, 20:

yt = µ+
s∑

k=1

αkyt−k +
6∑

j=1

s∑

k=0

γj,kxj,t−k + et. (34)

with N = 7, 14, 21, 42, 77, 112, 147 regressors and T = 100

Thus, there are cases with N < T/2, N near T , and N > T ,
plus under-specified when s = 0, 1 at α = 1%, 0.5%.
We focus on costs of search and inference, using RMSEs for
exogenous regressors only, and assess the search costs
for lagged yt−k by deviations from the long-run solution:

USRMSELDV =

√√√√ 1

M

M∑

i=1

(
s∑

k=1

β̃y,k,i −
s∑

k=1

βy,k,i

)2

(35)

so the timing exact of the dynamics is not required.
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Search & inference costs as s increases
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Under-specification

Now consider cases where s = 0, 1 and extend set of DGPs.
Let 6 in (32) correspond to r − 2 for r = 3, . . . , 8.
LDGP is joint density of included variables:
a subset creates a less useful reduction of the DGP
denoted LDGP∗.
Benchmark for inferences remains DGP parameters, not
the induced parameters of LDGP∗.
Figure 93 plots search and inference costs at each DGP for
the two GUMs with s = 0, 1.
As more variables relevant, inference costs increase,
but search costs decline – and can even be negative.
Higher RMSE costs from just estimating DGP than
searching from an incorrect GUM .
Choice of α = 0.01 or 0.005 makes almost no difference.
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Search & inference costs from under-specification
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Implications

(A) The costs of search increase as s increases from more
irrelevant variables to search over.
(B) Costs of search increase steadily–almost linearly–
despite a shift from N � T to N > T between s = 10 to
s = 15.
(C) A tighter significance level results in lower search costs.
(D) At α = 0.005, the costs of search are lower than the
costs of inference even when N > T (s = 15), so there are
an additional 98 irrelevant variables.
(E) The costs of inference over the LDGP with no selection
are substantial for the larger DGPs.
(F) Advantages of search relatively larger with
mis-specification, as costs of estimating DGP can be higher
than searching from GUM.
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Impulse saturation in fat-tailed distributions

Impulse saturation aims to detect outliers and location
shifts: is it ‘confused’ by a fat-tailed distribution (e.g., t3)?
Use design in (6) and (7), but (8) becomes:

εt ∼
(
0.4× n0.5

)
× t3, n = 1, . . . , 10 (36)

Autometrics checks normality:
if it rejects, pd-value of later normality tests is reduced,
but may retain irrelevant variables to retrieve original pd.
Table 6 records average gauges and potencies over all
n = 1, . . . , 10 experiments using t3:
with diagnostic testing at pd = 1%,
without, and
with impulse saturation at α.
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Diagnostics & impulse saturation for t3

impulse saturation no no yes no no yes
diagnostic tracking yes no no yes no no
α 1% 0.1%
gauge% 8.6 1.4 4.9 6.8 0.52 1.4
gauge% (no dummies) – – 1.9 – – 0.23
potency% 96.3 96.3 98.8 92.4 92.5 91.4

Table 6: Gauge and potency for t3 over n = 1, . . . , 10 with and
without impulse saturation and diagnostics.

Definition of gauge is ambiguous:
are retained dummies relevant or not, & part of potency?
So, also calculate gauge not counting retained dummies.

If DGP incorrectly assumed to be normal with diagnostic testing,
gauge is far too high at tight α: 7% for α = 0.1%.
No diagnostic testing improves gauge, but still too large.
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Ratios of MSEs without to with IS for t3
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Conditional distributions with and without IS
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Route map

(1) Discovery in general

(2) Automatic model extension

(3) Automatic model selection

(4) Automatic model estimation

(5) Automatic model evaluation

(6) Embedding theory models

(7) Excess numbers of variables N > T

(8) An empirical example: food expenditure

Conclusions
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Modelling expenditure on food

Many correct decisions needed for successful
modelling:
expenditure depends on many relevant variables:
incomes, prices, interest rates, taxes, demography, etc.

All effects could vary with changes in ‘outside factors’:
legislation, policy regimes, financial innovation, etc.

Dependence could be linear or non-linear

Short-run, long-run and seasonal responses may differ

Relationship may evolve over time

Level of aggregation matters: national or regional, by
income levels, categories of transactions, etc.

Non-stationarities entail that any mis-specifications
have deleterious effects
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US real food expenditure and price data
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Modelling problems

‘Econometric Experiment’ in Magnus & Morgan (1999)
Extension of Tobin (1950): data over 1929–1989
Per capita constant price expenditure on food, ef , related to:
constant price total final expenditure, e; real food prices, pf ;
savings rate, s; family size, a; & previous values
Most participants abandoned interwar period:
perturbed by Great Depression and Food Relief.
When model reformulated to explain changes:
excellent properties – equation standard error = 0.75%,
no significant diagnostics, yet fitted to whole sample
Autometrics equation is similar to Hendry (1999)
Model derived in a fraction of time it took earlier:
invaluable for labour saving.
Can even ‘forecast’ post-war from 1952 on.
Complete analysis in Hendry and Mizon (2010).
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Enforcing theory

ef,t = − 7.42
(0.71)

+ 0.45
(0.09)

et − 0.034
(0.13)

pf,t + 0.86
(0.16)

st + 0.073
(0.27)

at

R2 = 0.91 σ̂ = 0.066 FM(4, 56) = 137.7∗∗ Far(2, 54) = 55.6∗∗

χ2(2) = 10.4∗∗ Farch(1, 59) = 73.65∗∗ Freset(2, 54) = 14.2∗∗

Fhet(8, 52) = 10.5∗∗ FChow(20, 36) = 0.58

ef 
êf: static, no IIS 
~ef: static, IIS 

1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990

−12.7

−12.6

−12.5

−12.4

−12.3

−12.2

−12.1

−12.0

−11.9

−11.8

−11.7
ef 
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Selecting

IIS removes 1929–1935 & 1944–1949 but now does reject
constancy with FChow(20, 23) = 3.89∗∗ whereas:
∆ef,t = 0.33

(0.02)

st−1 − 0.32
(0.02)

c0,t−1 + 0.77
(0.05)

∆et + 0.11
(0.03)

∆et−1

− 0.69
(0.04)

∆(pf − p)t − 0.09
(0.01)

I31 − 0.10
(0.01)

I32 + 0.03
(0.01)

I34

+ 0.03
(0.01)

I41 + 0.06
(0.01)

I42 + 0.04
(0.01)

I51 + 0.02
(0.01)

I52

(R∗)2 = 0.99 σ̂ = 0.0067 FM(12, 10) = 108∗∗ Far(1, 9) = 0.09

χ2(2) = 0.72 Farch(1, 21) = 0.07 Freset(2, 8) = 2.39

FChow(36, 10) = 1.82

c0 = ef + 7.99− 0.4e+ 0.36(pf − p) (37)
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‘Forecasting’ the post-war period
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Super exogeneity in food expenditure

Build ‘automatic’ lagged equations with IIS for e; pf − p; s; a.

Finds 25 new impulse-indicators for:
(e): 1946; (pf − p): 1936, 1937, 1940, 1950, 1958, 1967,
1978; (s): 1943, 1968, 1984, 1987; (a): 1947, 1954, 1957,
1961, 1963; (pf − p,s): 1944, 1945, 1973; (s,a): 1949; (e,a):
1980; (e,pf − p,s): 1933, 1938.
Already had (impulses in common with model of ef in bold ):
1931 (e,pf − p,s), 1932 (e,s), 1934 (pf − p,s), 1941 (s), 1942
(pf − p,s), 1951 (pf − p), 1952, 1970.
Adding 25 to selected model of ef yields test:
F2522 = 1.63 (p = 0.13)
Does not formally reject, but common impulses do.
However, no impulses in common in the post-1952 period
yet constant across that sub-sample.
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Route map

(1) Discovery in general

(2) Automatic model extension

(3) Automatic model selection

(4) Automatic model estimation

(5) Automatic model evaluation

(6) Embedding theory models

(7) Excess numbers of variables N > T

(8) An empirical example: food expenditure

Conclusions
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Conclusions

All essential steps feasible once target LDGP defined :
1. automatically create general model from investigator’s xt:
extra variables, lags, non-linearity, & impulse indicators;
2. embed theory-model as a ‘forced’ specification;
3. select congruent, parsimonious encompassing model;
4. compute near-unbiased parameter estimates; and
5. stringently evaluate results.
Generalizes to N > T with expanding and contracting
searches: see HP8 when N = 145, T = 139 at α = 0.001.
Little difficulty in eliminating almost all irrelevant
variables from the GUM (a small cost of search).
Avoids huge costs from under-specified models.
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Overall conclusions

When the LDGP would be retained by Autometrics if
commenced from it, then a close approximation is generally
selected when starting from a GUM which nests that LDGP.
Theory formulations can be embedded in the GUM, to be
retained without selection, with no impact on estimator
distributions, despite selecting over N > T variables.
Model selection by Autometrics with tight significance
levels and bias correction is a successful approach
which allows multiple breaks to be tackled.
All the ingredients for empirical model discovery
jointly with theory evaluation are in place .
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Original BP and IIS on US real interest rates
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Extended BP and IIS on US real interest rates
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