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Abstract. Our paper explores possible limitations of the Gaussian model in Wegmann and
Villani (2008, WV) due to intrinsically non-negative values. The relative performance of
the Gaussian model is compared to an extension of the Gamma model in Gordy (2008)
within the symmetric second price common value model. A key feature in our approach
is the derivation of an accurate approximation of the bid function for the Gamma model,
which can be inverted and differentiated analytically. This is extremely valuable for fast and
numerically stable evaluations of the likelihood function. The general MCMC algorithm in
WV is utilized to estimate WV’s eBay dataset from 1000 auctions of U.S. proof coin sets,
as well as simulated datasets from the Gamma model with different degrees of skewness in
the value distribution. The Gaussian model fits the data slightly better than the Gamma
model for the particular eBay dataset, which can be explained by the fairly symmetrical value
distribution. The superiority of the Gamma to the Gaussian model is shown to increase for
higher degrees of skewness in the simulated datasets.
Keywords:

1. Introduction

Structural econometric models of auction data have become increasingly common in the
literature, see e.g. Bajari (2005) and Paarsch and Hong (2006) for recent surveys. As empha-
sized by Laffont and Vuong (1996), auction models are particularly well suited for structural
estimation since many datasets are available and well-defined game forms exists. This is es-
pecially true in the field of Internet auctions, such as eBay, where high quality datasets are
readibly available.

Most of the work in econometric models of auction data analyzes either the private or the
common value model. Within the private value paradigm each bidder knows his own valuation
of the object and will not be affected by knowing the valuations of the other bidders. In a
common value auction the value of the object is unknown but the same for all bidders, and
each bidder uses his private information (the signal) to estimate the unknown value. Good
examples of structural econometric auction models are Paarsch (1992), Elyakime, Laffont,
Loisel and Vuong (1997), and Bajari and Hortacsu (2003, BH).

Within each paradigm the values of the objects are often assumed to follow a certain
distribution that is commonly known to all bidders. In most empirical work the outcomes from
one or several value distributions are treated in isolation without comparing the performance
between the different distributions. Our paper assume the common value model, and show
how the relative performance between two different distributional setups differ substantially
for various types of data.

BH model Internet coin auctions at eBay as independent second price common value auc-
tions with stochastic entry, and assume symmetric bidders and a symmetric Nash equilibrium.
The objects’ values are assumed to follow a hierarchical Gaussian model where the mean, vari-
ance, and the expected number of bidders are functions of covariates. Wegmann and Villani
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(2008, WV) refine and extend the analysis in BH. WV derive an accurate linear approxima-
tion of the bid function that can be inverted and differentiated analytically. This is extremely
valuable for fast and numerically stable evaluations of the likelihood function. Moreover, WV
use a general Metropolis-Hastings algorithm for Bayesian variable selection to quantify the
importance of individual covariates in the model. The model appears to fit the data well, and
the out-of-sample predictive performance is good.

Since values are intrinsically non-negative, one can argue that the assumption of normally
distributed values in BH is untenable. The Gaussian model is nevertheless likely to be a
very useful approximation when the coefficient of variation (CV) of the value distribution is
moderate or small, so that the distribution has a small probability on negative values. The
aim of this paper is to explore this issue by contrasting the Gaussian model with an extension
of the Gamma model in Gordy (1998). We use the same dataset as in WV from 1000 eBay
auctions of U.S. proof coin sets. Other distributions than Gamma could also be used on (0,∞),
but since the Gamma model is closed under multiplication we are able to derive a suitable and
accurate approximate solution of the bid function for the Gamma case. This approximation
is non-linear, but of a simple form that can be inverted and differentiated analytically.

The parameter estimates for the two models are nearly the same, in both sign and mag-
nitude, but the Gaussian model performs slightly better in predicting auction prices and
the MCMC algorithm is more efficient in the Gaussian case. The reason why the Gaussian
distribution does so well is that the inferred signals in this particular eBay dataset are fairly
symmetric and essentially bounded away from zero. To explore the limitations of the Gaussian
model for other possible datasets, we conducted a simulation study where the data generat-
ing process had increasingly more skewness in the signals. As expected, the Gamma model
is shown to be superior to the Gaussian model, and the superiority is increasing for higher
degrees of skewness.

2. Two hierarchical models

We compare two models of common values in second price auctions with stochastic entry.
First, we adopt the same hierarchical Gaussian model as in WV. Second, to account for
asymmetric or positive-valued distributions, we extend the Gamma model in Gordy (1998).

2.1. General setup. Assume the seller sets a publicly announced minimum bid (public re-
serve), r ≥ 0, and risk-neutral bidders compete for a single object using the same bidding
strategy (symmetric bidders). The value of the object, v, is unknown and the same for each
bidder at the time of bidding, but a prior distribution for v is shared by the bidders. To esti-
mate v, each bidder relies upon their own private information of the object to receive a private
signal x from the same distribution x|v. Let fv(v) denote the probability density function of
v, fx|v(x|v) the conditional probability density function of x|v, and Fx|v(x|v) the conditional
cumulative distribution function of x|v. Since the auction involves symmetric bidders and a
symmetric equilibrium we can focus on a single bidder without loss of generality. The bid
function can be written as1

(2.1) b(x, λ) =















∑∞
n=2

(n−1)·pn(λ)·
∫∞
−∞ v·Fn−2

x|v
(x|v)·f2

x|v
(x|v)·fv(v) dv

∑∞
n=2

(n−1)·pn(λ)·
∫∞
−∞ Fn−2

x|v
(x|v)·f2

x|v
(x|v)·fv(v) dv

, if x ≥ x⋆

0, if x < x⋆ or b(x, λ) < 0,

where pn(λ) is the Poisson probability of (n−1) bidders in the auction with λ as the expected
value of the Poisson entry process. Bidders participate with a positive bid if their signal,

1See BH for an implicit solution.
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x, is above the cut-off signal level x⋆. Given an arbitrary bidder with signal x, let y be the
maximum signal of the other (n− 1) bidders. The cut-off signal level is then given in implicit
form as (Milgrom and Weber, 1982)

x⋆(r, λ) = inf
x

(EnE[v|X = x, Y < x, n] ≥ r) ,

which gives the minimum bid, r, as

(2.2) r(x⋆, λ) =
∞
∑

n=2

pn(λ) ·
∫∞
−∞ v · Fn−1

x|v (x⋆|v) · fx|v(x⋆|v) · fv(v) dv
∫∞
−∞ Fn−1

x|v (x⋆|v) · fx|v(x⋆|v) · fv(v) dv
.

Note that the publicly announced minimum bid, r, is only written as a function of the cut-off
signal for tractability. The minimum bid is exogenously given by the seller.

In both the Gaussian and the Gamma models presented below the expected value µ and
the variance σ2 exists in the distribution of v. Moreover, E[x|v] = v, and E

[

1
x |v
]

= 1
v in the

Gaussian and the Gamma model, respectively. Similar to BH we specify regression models for
(µj , σ

2
j , λj) in auction j as

µj = z′µj
βµ

σ2
j = exp

(

z′σj
βσ

)

λj = exp
(

z′λj
βλ

)

,(2.3)

where zj = (z′µj
, z′σj

, z′λj
)′ are auction specific covariates in auction j.

BH treat strategic considerations of objects in parallel auctions to be independent, and
show that last-minute bidding is a symmetric Nash equilibrium on eBay. This allows BH
to model their eBay auctions as independent second price auctions. The likelihood function
of bids is complicated since some bids become unobserved. First, some bidders may draw a
signal x < x⋆, in which case they do not place any bid. Second, the highest bid is usually not
observed because of eBay’s proxy bidding system, see WV for a detailed description. The bid
distribution for a single auction is of the form:

(2.4) fb (b|β, r, z, v) = fx|v [φ (b|β, r, z) |v, κ, σ]φ
′
(b|β, r, z) ,

where fb (b|β, r, z, v) is the probability density function of the bids conditional on (β, r, z, v) ,
and φ (b|β, r, z) is the inverse bid function given (β, r, z) . Let n be the number of bidders who
submit a positive bid in a given auction and let b = (b2, b3, . . . , bn) be the vector of observed
bids. Then, the likelihood function for that auction is given by

fb (b2, b3, . . . , bn|µ, σ, λ, β, r, z)

=
N̄
∑

i=n

p(i|λ) ·
∫ ∞

−∞
Fx|v (x⋆|v, κ, σ)i−n ·

{

1 − Fx|v [φ (b2|β, r, z) |v, κ, σ]
}I(n≥1)

×
n
∏

i=2

fb (bi|β, r, z, v) · fv(v|µ, σ)dv,(2.5)

where p(i|λ) is the Poisson probability of i bidders in the auction with λ as the expected value,
I (n ≥ 1) is an indicator variable for at least one bidder in the auction, and N̄ is an upper
bound for the total number of potential bidders. For the sake of tractability, let N̄ = 30, as
in BH.
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To estimate the parameters of the models we combine the likelihood function with the same
prior settings and Bayesian techniques as in WV. A single evaluation of the posterior (likeli-
hood) requires numerical integration to compute b (x|β, r, z) in (2.1), followed by additional
numerical work to invert and differentiate b (x|β, r, z). The same applies to the computation
of x⋆. This costly procedure needs to be repeated for each of the auctions in the dataset.
Instead, we make use of bid approximations for both models which leads to much faster and
numerically stable likelihood evaluations. We first review the linear approximation of the bid
function in WV for the hierarchical Gaussian model. Then, we derive the approximate bid
function for the Gamma model below.

2.2. Gaussian model. Let vj denote the common value in auction j, and let xij denote the
signal of the ith bidder in auction j. The hierarchical Gaussian model can be defined as

vj ∼ N(µj , σ
2
j ), j = 1, ...,m,

xij |vj iid∼ N(vj , κσ
2
j ), i = 1, ..., nj ,

(2.6)

where m is the total number of auctions, and nj the number of bidders that bid zero or place
a positive bid in auction j. To get much faster and numerically stable likelihood evaluations
we use the linear approximation of the bid function in WV,

(2.7) bappr(x, λ) =







c+ ωµ+ (1 − ω)x, if x ≥ x⋆

0, if x < x⋆ or b(x, λ) < 0,

where c = −
√
κσγθ(λ−2)

γ(λ−2)+1+ κ
2

, ω =
κ
2

γ(λ−2)+1+ κ
2

, θ = 1.96 and γ = 0.1938. In addition, WV show

that the cutoff signal can be similarly approximated by

x⋆(r, λ) ≈ r −
∑∞

n=2 pn(λ)(c̃+ ω̃µ)
∑∞

n=2 pn(λ)(1 − ω̃)
,

where c̃ = −
√
κσγθ(n−1)

γ(n−1)+ 1

2
+κ

2

, and ω̃ =
κ
2

γ(n−1)+ 1

2
+κ

2

. The distribution of the bids in (2.4) simplifies

to b|v ∈ N [c+ µ, (1 − ω)2κσ2], which speeds up the likelihood evaluation even more.

2.3. Gamma model. Turning to the Gamma case, it is more convenient to solve the model
in terms of inverse signals (Gordy, 1998). Let sij = 1

xij
denotes the inverse signal of the

ith bidder in auction j. Then, by following Gordy (1998), we use the following hierarchical
Gamma model:

vj ∼ Gamma(ξj , ψj), j = 1, ...,m, E (vj) = µj =
ξj
ψj
, V ar(vj) = σ2

j =
ξj
ψ2
j

sij |vj iid∼ Gamma(τ, τvj), i = 1, ..., nj , E (sij |vj ) =
1

vj
, V ar (sij |vj ) =

1

τv2
j

,(2.8)

where τ works as a precision parameter, m is the total number of auctions, and nj is the
number of bidders that bid zero or place a positive bid in auction j. The bid function for the
Gamma model is of the form2

(2.9) b(x, λ) =











∑∞
n=2

(n−1)·pn(λ)·
∫∞
0
v·(1−Fs|v(1/x|v))n−2·f2

s|v
(1/x|v)·fv(v) dv

∑∞
n=2

(n−1)·pn(λ)·
∫∞
0

(1−Fs|v(1/x|v))n−2·f2
s|v

(1/x|v)·fv(v) dv
, if x ≥ x⋆

0, if x < x⋆,

2See Gordy (1998) for the case of a known number of bidders.
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and the minimum bid for the Gamma model is given by

(2.10) r(x⋆, λ) =
∞
∑

n=2

pn(λ) ·
∫∞
−∞ v · (1 −Gs|v(1/x

⋆|v))n−1 · gs|v(1/x⋆|v) · gv(v) dv
∫∞
−∞(1 −Gs|v(1/x⋆|v))n−1 · gs|v(1/x⋆|v) · gv(v) dv

.

The likelihood function changes to

fb (b2, b3, . . . , bn|µ, σ, λ, β, r, z)

=
N̄
∑

i=n

p(i|λ) ·
∫ ∞

−∞

(

1 − Fs|v (1/x⋆|v, τ)
)i−n · Fs|v [φ (b2|β, r, z) |v, τ ]I(n≥1)

×
n
∏

i=2

fb (bi|β, r, z, v) · fv(v|ξ, ψ)dv.(2.11)

By using the MacLaurin series of order (τ − 1) for the exponential function, Gordy (1998)
obtains a finite series expansion of the bid function for the Gamma model (see B2(x), formula
(7)), and argues that computations are quite simple and fast. While Gordy’s solution is very
handy for computing the bid function, it has limited use in empirical work. First, the solution
is restricted to the set of positive integers for τ, which makes it problematic if we want to link
τ to covariates in the estimation process. Second, it is still very time demanding to evaluate
the likelihood function since the inverse bid function has to be solved numerically for each
bid in every auction. Fortunately, the equilibrium bid function for the Gamma model can be
approximated in a similar way as for the approximate bid function of the Gaussian model in
WV, see Appendix A for a complete derivation. The approximate bid function is given by

(2.12) b(x) ≈ [ξ + 2τ + (λ− 2)ξτ ] · x
ψx+ 2τ + (λ− 2)ψτ

,

where

ξτ = −0.1659 − 0.0159 · τ + 0.2495 · log(1 + τ),

and

ψτ = 0.3095 − 0.0708 · τ + 1.0241 · log(1 + τ),

where 0.1 ≤ τ ≤ 10. If necessary, other values of τ can be handled similarly, see Appendix A
for details. The minimum bid function is given by

(2.13) b(x) ≈ [ξ + 2τ + (n− 1)ξτ ] · x
ψx+ 2τ + (n− 2)ψτ

.

Some intuition can be gained from the approximate bid function in equation (2.12). Less
precision in public information (i.e. smaller ψ in the common value distribution) should
constitute an incentive for a bidder to place more weight on his private information (the
signal). This effect is well captured by the approximation. Replacing ξ with ψµ in equation
(2.12) and rewriting we get that

(2.14) b(x) ≈ ψµ+ 2τ + (λ− 2)ξτ

ψ + 2τ+(λ−2)ψτ

x

,

and

b(x) −→ 2τ + (λ− 2)ξτ
2τ + (λ− 2)ψτ

· x if ψ −→ 0, and b(x) −→ µ if ψ −→ ∞.
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Increasing the precision parameter τ (i.e. higher precision) gives an opposite effect on the
approximate bid function. To see this, we first note that our approximation routine gives that

(

ξτ
τ
,
ψτ
τ

)

−→ (0, 0) if τ −→ ∞,

and

(ξτ , ψτ ) −→ (0, 0) if τ −→ 0.

It follows now directly from equation (2.14) that

b(x) −→ µ if τ −→ 0,

and by rewriting the approximate bid function in equation (2.12) we get that

b(x) ≈

[

2 + ξ
τ + (λ− 2) ξττ

]

· x

2 + ψx
τ + (λ− 2)ψτ

τ

−→ x if τ −→ ∞,

which also agrees with intuition. The higher precision in signals the more the bidders trust
their private information.

In Figure 1 the approximate bid function in equation (2.12) is compared to the exact bid
function in equation (2.9). Using the estimation results in Section 3 and the eBay datasets in
WV, a representative auction3 is used as a benchmark. The approximation works very well
for a smaller number of expected bidders, irrespective of τ and σ. As the expected number of
bidders increases the approximation accuracy deteriorates. However, the approximated bids
when λ = 6 are only 4.9 per cent lower than the exact bids for signals at the median of x, and
only 1.9 per cent lower than the exact bids for the 99 % percentile. In addition, λ = 6 is very
unrealistic according to the estimation results of the eBay auction model in Section 3.

3. Model comparison on eBay coin auction data

The performance between the Gaussian and the Gamma model is here compared using the
same dataset as in WV from 1000 eBay auctions of U.S. proof coin sets.

3.1. Posterior distribution of parameters. In the posterior distribution the likelihood
function is combined with a prior distribution on the unknown model parameters. As in
WV, the user needs to typically specify four prior hyperparameters. First, the scale factor
c that determines the tightness in the prior distribution of βµ, βσ, and βλ. Second, the prior
probability π of including a covariate in the MCMC algorithm. Third and fourth, the prior
mean κ̄ (τ̄), and the degrees of freedom g in the prior distribution of κ (τ) for the Gaussian
(Gamma) model.

Table 1 reports our parameter estimates for the Gaussian and the Gamma model. With a
few exceptions the estimates are fairly similar between the models. The covariates BookStd

and LBookStd are the main drivers in the models for µ and σ, respectively. The large negative
coefficient on MinBidStd in the Poisson entry process is due to the fact that a higher minimum
bid implies a higher threshold for potential bidders to participate in the auction. In general,
the posterior inclusion probabilities are either close to 0 or 1, which gives good indications
of which covariates that are of importance in the models. Neither of the posterior inclusion
probabilities for Book*ID, LBook*Pow, and LBook*ID are close to 1 for both models, which
suggests that eBay’s detailed seller information is not an obvious significant source for how

3The representative auction in WV is taken to be the median of the covariates and the posterior mean
estimates of the model parameters, rounded to one decimal. This gives τ = 3, µ = 21, σ = 8.4, and λ = 3.8.
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the models’ expected value nor the standard deviation of the object’s unknown common value
are affected.

The major differences between the models are in the parameter estimates of κ, and τ, and
between the parameter estimates in the models for σ. This is probably due to the differences
in the model setups. The parameter σ is used in both the distributions of v and x|v for the
Gaussian model compared to the Gamma model with σ only used in the distribution of v. In
addition, v is defined as the expected value in the distribution of x|v for the Gaussian model,
whereas v is used in both the expected value and the variance of the inverse signal distribution
for the Gamma model. It seems that the lower value of τ, compared to κ, compensates for
the generally higher values of the parameter estimates in σ for the Gamma model.

The posterior inclusion probabilities for most of the covariates are very close in magnitude
between the models, especially for the covariates in λ. The major differences in inclusion
probabilities for Book*ID, LBook*Pow, and LBook*ID, are due to only minor differences of the
Bayesian t-ratio,

tBayesian =

∣

∣

∣
θ̂
∣

∣

∣

s(θ̂)
,

where θ̂ and s(θ̂) are the posterior mode and the approximate/asymptotic posterior deviation,
respectively, from the optimization of the posterior function. WV show that the inclusion
probabilities are very sensitive to changes around a certain threshold of the Bayesian t-ratios.
The inclusion probabilities increase sharply above the threshold value (slightly larger than
1.96 threshold used in classical t-tests at a 5% significance level). The values of the Bayesian
t-ratios, for the covariates above, differ only slightly between models but gives nevertheless
substantially different inclusion probabilities. Hence, differences in inclusion probabilities
which are not close to either 0 or 1, should not be treated as a sign of very different estimation
results between the models.

The performance of the MCMC algorithm is better in the Gaussian case. The mean accep-
tance probability is 56% for the Gaussian model compared to 30% for the Gamma model, and
the inefficiency factors (IF) are lower in the Gaussian case. In WV the IF is defined as the
number of draws needed to obtain the equivalent result of a single independent draw. IFs close
to unity is therefore an indication of a very efficient algorithm. The median, the minimum,
and the maximum values of IF are 3.03, 3.80, and 11.54 for the Gaussian model, respectively,
compared to 5.08, 19.30, and 36.80 for the Gamma model.

3.2. In-sample fit. Similar to BH and WV, we evaluate the in-sample fit of the models by
comparing the observed data to simulated data from each model. Given a 100 systematically
sampled posterior draws of the model parameters, and the observed auction specific covariates
from 1000 auctions, we simulated 10, 000 full datasets with bids for each auction. Figure 2
presents within-auction bid dispersion as the difference between the highest observed bid and
the lowest bid divided by the item’s book value for each auction. In Figure 3, heterogeneity
across auctions is presented as histograms of the bids divided by the corresponding book
value in that auction. As we can see in both figures the Gaussian and the Gamma model
capture both the observed within-auction dispersion and the cross-auction heterogeneity very
well. The fit of the within-auction bid dispersion are nearly identical for both models, while
the Gaussian model performs slightly better in fitting the cross-auction heterogeneity than
the Gamma model. The histogram for the cross-auction heterogeneity of the Gamma model
appears to be somewhat skewed to the left compared to the more symmetrical fit from the
Gaussian counterpart.
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3.3. Out-of-sample predictions. The differences between the models are most appearent
in their out-of-sample predictions. Following WV, we use our estimated Gaussian and Gamma
models to predict a dataset of 48 additional auctions of U.S. proof sets, which were not used
in the estimation process. Given the auction specific covariates from these auctions, price
distributions were simulated in a similar way as for the simulated datasets of the in-sample
fits. The price distributions are a mixture between point distributions for no bids and one bid,
and continuous distributions for at least two bids (when at least one bid becomes observed).
The probability mass of the continuous distribution is set to equal the predictive probability
of at least two bids. Hence, the continuous distribution is not normalized to 1.

The predictive price distributions for both models are displayed on top of each other for
each auction in Figures 4 and 5. Auction 1−37 contains at least two bids, 38−45 a single bid,
and 46 − 48 no bids. Both models perform well in predicting auction prices with the actual
price located near the center of the visible continuous price distributions. The variances of the
predictive price densities for the Gaussian model appear to be smaller than for the Gamma
model, where the price distributions are lower and skewed to the left.

In an attempt to quantify and summarize the visual results in Figures 4 and 5, we compute
the log predictive density score (LPDS) for each auction in the evaluation dataset. Rather
than trying to combine the discrete and continuous components of the predictive distribution
in a more or less arbitrary way, we will compute the LPDS for each component separately.

First, to evaluate the discrete part of the distribution we compute the multinomial predictive
probability of no bids, one bid, and at least two bids. Let pi,j be the probability of j bids in
auction i, and let

Ii,j =







1, if there is j actual bids in auction i

0, if there is not j actual bids in auction i,

where i = 1, . . . ,mt, j = 0, 1, and mt is the number of test auctions used to evaluate the
predictions. Let I = (I1,0, I1,1, I2,0, . . . , Imt,1) be the vector of observed indicator variables,
and let p = (p1,0, p1,1, p2,0, . . . , pmt,1) be the predictive probabilities for each auction. Then,
the discrete LPDS measure is defined as

(3.1) LPDSd =

∑mt

i=1

∑2
j=0 Ii,j · log pi,j

mt
,

where Ii,2 = (1 − Ii,0 − Ii,1) , and pi,2 = (1 − pi,0 − pi,1) are the indicator variable and the
predictive probability for at least two bids in auction i, respectively. Table 2 presents the
LPDSd for our eBay dataset. In a majority of the 48 test auctions the Gaussian model attains
a higher score than the Gamma model, even if the mean value of LPDSd is lower across all
auctions for the Gaussian model. Generally, the scores from both models are much lower
for the 11 auctions with maximum one bid, where the Gaussian model attains a substantially
lower score than the Gamma model. In all, when it comes to the discrete part of the predictive
distribution, this suggest a slight edge for the Gaussian model in auctions with at least two
bids, and a slight edge for the Gamma model whenever there is maximum one bid in the
auction.

The second LPDS measure focuses on the continuous part of the predictive price distribution
and is defined as

(3.2) LPDSc =

∑mt2

i=1 log
(

p̃(yi)
pi,2

)

mt2

,
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where yi is the realized price in auction i evaluated in the predictive price distribution p̃(·), and
mt2 is the number of test auctions with at least two bids. The Gaussian model outperforms
the Gamma model here. As we can see in Table 2, the Gaussian model performs best in a
large majority of the auctions, and the score for the Gaussian model is substantially higher
compared to the Gamma model. In Figures 6 and 7 the discrepancies in scores are obvious.
The Gaussian model attains, in general, higher predictive probabilities at the realized prices
than the Gamma model.

The reason for the relatively good performance of the Gaussian model is probably that the
true value distribution is close to normal, or at least symmetric, for this particular dataset.
To infer the magnitude of the skewness in the value distribution, we obtained the values of µ
and σ for the Gamma model in each of the 48 test auctions. Specifically, given the covariates
in an arbitrary auction and the posterior means for the Gamma model in Table 1 the typical
degree of skewness, Sk, can be calculated for each auction as

Sk =
2√
ξ

= 2
σ

µ
= 2cν ,

where cν is the coefficient of variation. In Figure 8 a boxplot is displayed for the different
degree of skewness in the 48 test auctions. In most auctions the degree of skewness is about
0.7 − 0.8, which suggests that the value distribution is fairly symmetric compared to the
results in the next section for the least skewed model. In that upcoming section we simulated
data with different degrees of skewness in the value distribution to investigate the relative
performance between the Gaussian and the Gamma model.

4. Model comparisons on skewed simulated data

We conducted a simulation study to compare the performance between the Gaussian and
the Gamma model using positive values and different degrees of skewness, Sk, in the data-
generating process. Specifically, three Gamma models with Sk = 2 (the exponential distribu-
tion), Sk = 1.5, and Sk = 0.5 (the least skewed model) were used to simulate 25 full datasets
of bids and auction specific covariates in 1000 auctions for each model. Then, each dataset
for each degree of skewness was estimated by both the Gaussian and the Gamma model.

4.1. In-sample fit. Since the book value does not exist as a covariate for the simulated data,
we exclude the book value from the definitions of the within-auction dispersion and the cross-
auction heterogeneity. Hence, the within-auction dispersion is here defined as the difference
between the highest observed bid and the lowest bid, while the cross-auction heterogeneity is
displayed as histograms of the bids across all auctions.

Figures 9 to 11 display the median of the within-auction dispersion and the cross-auction
heterogeneity across the 25 simulated datasets for each of the three degrees of skewness. The
Gamma model fits the data very well in all cases. As the degree of skewness increases the fit of
both the within-auction dispersion and the cross-auction heterogeneity becomes worse for the
Gaussian model. However, in Figure 11 for the least skewed data the Gamma model fits the
cross-auction heterogeneity (the distribution of bids) only slightly better than the Gaussian
counterpart. This is probably due to the quite symmetrical distribution of bids for the actual
data in the figure. In fact, whenever the distribution of bids is symmetric the Gaussian model
fits the data very well, since the bid distribution of the Gaussian model is normal for the
approximate bid function in equation (2.7). In Figures 8− 9 the distribution of bids is highly
skewed, and the Gaussian fit of the data becomes highly skewed to the right.
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4.2. Out-of-sample predictions. As the degree of skewness increases in the data-generating
process the variance in the common value distribution becomes larger. Therefore, in order to
compare the LPDSc in a more appropriate way for different degrees of skewness, we adjuste
the LPDSc in this case to

(4.1) LPDSc =

(

∑mt2

i=1 log
(

p̃(yi)
pi,2

))

/mt2
√

V ar(v)
=
ψSk
2

∑mt2

i=1 log
(

p̃(yi)
pi,2

)

mt2

,

where Sk = 2√
ξ
.

Table 3 reports the LPDS for each degree of skewness. The Gamma model outperforms the
Gaussian model in the continuous part of the predictive price distribution, except for the lowest
degree of skewness where the Gamma model is only slightly better than the Gaussian model.
In average, the mean and standard deviation of LPDSc are higher and lower, respectively, for
the Gamma model. However, for roughly half of the 25 datasets the Gaussian model has a
higher LPDSc than the Gamma model in a majority of auctions, regardless degree of skewness.
To get a closer look at possible differences, we compared the predictive price densities of the
Gamma and the Gaussian model in several datasets for each degree of skewness.

In general, the densities for the Gamma model were more concentrated and skewed to
the left than the Gaussian counterpart where the densities were more symmetrical and more
located to the right. This resulted in substantial differences between the LPDSc of the models
for realized prices to the left in the predictive distribution, but only minor differences to the
right. In the left part of the predictive price densities the Gamma model was clearly the
dominating model in LPDSc, while the Gaussian model had only a little higher LPDSc than
the Gamma model in the right part. As the degree of skewness increases these differences
become larger.

Turning to the discrete part of the predictive distribution, we can discern from Table 3
that the Gamma and the Gaussian model alternate in attaining the lowest scores for at least
two bids and maximum one bid. Whenever there is at least two bids the Gamma model is
outperforming the Gaussian model, in average, with substantially higher scores, in contrast
to the opposite effect for maximum one bid where the Gamma model attains, in average,
lower scores. This is consistent with the result from the eBay dataset where the Gaussian is
generally the dominating model. The mean and the precision of the scores are increasing in
the degree of skewness for at least two bids, while the opposite effect pertains to the Gamma
model for maximum one bid.

Moreover, the differences in scores decreases as the data becomes more symmetrical, and
for the most symmetrical case the models are again equally good as for the continuous part
of the predictive distribution. In fact, since the Gaussian model performs better than the
Gamma model for the eBay data, and since both models seem to perform equally good for
Sk = 0.5, there is possibly a threshold, less than Sk = 0.5, when the Gaussian model becomes
the best fitted model for lower degrees of skewness. In all, the results from the simulated data
shows that the Gamma model is clearly outperforming the Gaussian model for highly skewed
data, but when the degree of skewness decreases the differences diminish.

5. Conclusions

An inherent feature of econometric auction models is that the value of the auctioned object is
intrinsically non-negative. Nevertheless, there often exists value distributions in the literature
that allow for negative values, even if such distributions are untenable. Our paper explores
this issue by contrasting the Gaussian model in WV with an extension of the Gamma model in
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Gordy (1998). A key feature in our approach is the derivation of an accurate approximation of
the bid function for the Gamma model, which can be inverted and differentiated analytically.
This is extremely valuable for fast and numerically stable evaluations of the likelihood function
in the estimation process.

We utilized the general MCMC algorithm for Bayesian variable selection in WV to compare
the relative performance between the Gaussian and the Gamma model, using WV’s eBay
dataset from 1000 auctions of U.S. proof coin sets. In general, the Gaussian model was slightly
better than the Gamma model in fitting this data, and in predicting auction prices on the 48
auctions of the test sample. This is probably due to an almost normal or at least symmetrical
value distribution, where the density is bounded away from zero with small probabilities for
negative values. In fact, given the covariates for the test auctions and the posterior means for
the Gamma model, we obtained small values for the coefficient of variation and the degree of
skewness in most auctions, which support this explanation.

To explore possible limitations of the Gaussian model for other degrees of skewness in the
value distribution, we simulated 25 datasets from three Gamma models with different degrees
of skewness. Then, the relative performance between the Gaussian and the Gamma model was
compared for each case. The Gamma model was clearly outperforming the Gaussian model
for the two most skewed models, but was only slightly better for the least skewed model.
This agrees with the result from the eBay dataset. As the value distribution becomes more
symmetrical the relative performance of Gaussian model increases compared to the Gamma
model. This suggest that it is of importance to make use of either model, or both, depending
on the skewness of the data.
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Appendix A: Approximating the equilibrium bid function for the Gamma model

The key ingredient in our approach is to approximate the survival function (1−Gs|v(1/x|v))
by a Gamma probability density function over the whole interval (0,∞). This is superior the
approximation of the bid function for the Gaussian model in WV, where a certain interval
needs to be obtained for the approximation of the standard normal distribution function. By
substitution the distribution function of s|v becomes

Gs|v(1/x|v) =

∫ 1/x

0

(τv)τ

Γ(τ)
lτ−1e−τv·l dl =

∫ τ · v
x

0

1

Γ(τ)
tτ−1e−t dt.

Hence, the distribution function Gs|v depends on the parameter τ through the support v
x . Let

h
(

v
x |ξτ , ψτ

)

= ψξτ +1
τ

Γ(ξτ+1)(
v
x)ξτ · e−ψτ · v

x be the approximating Gamma p.d.f. to (1−Gs|v(1/x|v)).
Then, given an arbitrary τ the approximation constants ξτ and ψτ are obtained by minimizing
the maximum divergence between h

(

v
x |ξτ , ψτ

)

and (1 −Gs|v(1/x|v)), i.e.

(ξ̂τ , ψ̂τ ) = min
ξτ ,ψτ

(

max
v
x

∣

∣

∣
h
(v

x
|ξτ , ψτ

)

−
(

1 −Gs|v(1/x|v)
)

∣

∣

∣

)

.

The approximation constants can in principal be calculated for any τ, but in practice it is
more convenient to tabulate them for different values of τ. However, since the approximation
of the bid function needs to be solved for any τ in the estimation process, it is even better to
utilize multivariate regression, in which the dependent variables (ξ̂τ , ψ̂τ ) and functions of τ as
independent variables are calculated for each τ on a grid of values4. To receive a good fit of
the regression models we choose a sufficiently wide grid for τ that contains all relevant values
of τ for our datasets. Note that, if necessary, the best regression model can be estimated for
any other grid that suits any other specific problem.

The regression model with the lowest adjusted R-square was chosen as the best regression
model, which resulted in the following estimated regression model:

ξ̂τ = −0.1659 − 0.0159 · τ + 0.2495 · log(1 + τ),

and

ψ̂τ = 0.3095 − 0.0708 · τ + 1.0241 · log(1 + τ)

for 0.1 ≤ τ ≤ 10 with R2 equal to 99.5% and 99.2%, respectively.
Then, by replacing (1 − GS|V (1/x|v)) with hv(v|ξ̂τ , ψ̂τ ), the approximated bid function

becomes

b(x) ≈
∫∞
0 v · v(n−2)ξ̂τ+2τ+ξ−1 · e−( 1

x
(ψ̂τ (n−2)+2τ)+ψ)·v dv

∫∞
0 v(n−2)ξ̂τ+2τ+ξ−1 · e−( 1

x
(ψ̂τ (n−2)+2τ)+ψ)·v dv

.

Let ξ
′

τ = (n−2)ξ̂τ +2τ+ξ, and let ψ
′

τ = 1
x(ψ̂τ (n−2)+2τ)+ψ. Then, we get the approximated

bid function as

b(x) ≈
∫∞
−∞Gamma(v|ξ′τ + 1, ψ

′

τ ) dv
∫∞
−∞Gamma(v|ξ′τ , ψ′

τ ) dv
=

Γ(ξ
′

τ + 1)

ψ
′(ξ′τ+1)
τ

· ψ
′ξ

′
τ

τ

Γ(ξ′τ )

=
ξ
′

τ

ψ′

τ

=

[

ξ + 2τ + (n− 2)ξ̂τ

]

· x

ψx+ 2τ + (n− 2)ψ̂τ
,

4Several functions of τ were used as independent variables, but we do not list all of them here.
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where Gamma(v|ξ′τ , ψ
′

τ ) denotes the p.d.f. of the Gamma distributed variable v with param-

eters ξ
′

τ , and ψ
′

τ .
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Table 1. Comparing the estimation results from the Gaussian and the Gamma
model on the eBay dataset.

Parameter Covariate Post Mean Post Std Post Incl prob
Gaussian Gamma Gaussian Gamma Gaussian Gamma

κ/τ - 5.499 2.997 0.772 0.111 1.000 1.000
µ Const 28.273 28.307 0.245 0.304 1.000 1.000

BookStd 0.740 0.747 0.010 0.012 1.000 1.000
Book*Pow 0.033 0.046 0.015 0.018 0.064 0.107
Book*ID 0.128 0.052 0.036 0.039 0.900 0.017
Book*Unopen 0.372 0.488 0.029 0.051 1.000 1.000
Book*MinBlem −0.022 0.002 0.021 0.028 0.010 0.008
Book*MajBlem −0.252 −0.269 0.030 0.040 1.000 1.000
Book*LargNeg −0.003 −0.020 0.018 0.025 0.004 0.009

log(σ2) Const 3.997 4.314 0.071 0.038 1.000 1.000
LogBookStd 1.262 1.276 0.038 0.026 1.000 1.000
LBook*Pow 0.043 0.069 0.018 0.020 0.220 1.000
LBook*ID 0.042 0.032 0.040 0.067 0.481 0.011
LBook*Unopen 0.211 0.362 0.027 0.019 1.000 1.000
LBook*MinBlem −0.028 −0.057 0.027 0.026 0.012 0.039
LBook*MajBlem 0.036 0.063 0.040 0.049 0.007 0.017
LBook*LargNeg 0.035 0.042 0.021 0.027 0.017 0.050

log(λ) Const 1.193 1.234 0.021 0.022 1.000 1.000
Pow 0.009 −0.028 0.035 0.029 0.005 0.012
ID −0.177 −0.197 0.110 0.078 0.030 0.048
Unopen 0.323 0.331 0.048 0.048 1.000 1.000
MinBlem −0.049 −0.042 0.048 0.048 0.008 0.009
MajBlem −0.151 −0.115 0.085 0.097 0.019 0.015
LargNeg 0.055 0.086 0.049 0.047 0.012 0.022
LogBookStd −0.038 −0.036 0.027 0.021 0.018 0.031
MinBidStd −1.433 −1.380 0.056 0.059 1.000 1.000

Note: The prior hyperparameters are set to c = n, τ̄ = 0.25, g = 4, and π = 0.2, as for the

benchmark model in WV.
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Table 2. Log predictive density scores (LPDS) on the eBay coin auction data
for the Gaussian and the Gamma model.

Test auction Measure Gaussian Gamma % Gaussian wins
1 − 37 LPDSc -3.547 -3.684 27/37
1 − 48 LPDSd -0.526 -0.515 25/47
1 − 37 LPDSd -0.212 -0.238 20.5/37
38 − 48 LPDSd -1.687 -1.539 5/11

Note: Auctions 1-37 contains at least two bids, and auctions 38-48 maximum one bid. LPDSd

for auction number 43 is undefined (−∞) for the Gamma model, and is therefore excluded

from the calculations of LPDSd. The Gaussian and the Gamma model are equally good in

LPDSd for auction 21.

Table 3. Log price density scores (LPDS) on simulated data for the Gaussian
and the Gamma model.

Measure Statistics Sk = 2 Sk = 1.5 Sk = 0.5
Gaussian Gamma Gaussian Gamma Gaussian Gamma

LPDSc Mean −2.430 −2.138 −2.814 −2.361 −3.173 −3.157
Std Dev 0.254 0.186 0.833 0.166 0.109 0.095

LPDSd Mean −0.886 −0.877 −0.764 −0.755 −0.363 −0.364
Std Dev 0.069 0.081 0.070 0.084 0.092 0.093

LPDSd Mean −0.584 −0.449 −0.383 −0.301 −0.111 −0.111
Bids ≥ 2 Std Dev 0.057 0.042 0.035 0.031 0.011 0.011
LPDSd Mean −1.372 −1.567 −1.742 −1.924 −2.612 −2.630
Bids ≤ 1 Std Dev 0.120 0.126 0.103 0.127 0.244 0.264
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Figure 1. The exact versus the approximate bid function for the Gamma
model. Dotted lines represent the median and the 95 % probability intervals in
the unconditional distribution of x, and the full interval on the x-axis serves as
99 % probability intervals. In the upper left part of the figure the representative
auction, described in Section 2.3, is used as a benchmark.



18 BERTIL WEGMANN

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100
Within auction dispersion − Actual data

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4
x 10

5 Within auction dispersion − Simulated data for the Gaussian model

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4
x 10

5 Within auction dispersion − Simulated data for the Gamma model

Figure 2. Posterior predictive comparison of the within-auction dispersion for
the Gaussian and the Gamma model. The within-auction dispersion is defined
as the difference between the highest observed bid and the lowest bid divided
by the auctioned item’s book value.
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Figure 3. Posterior predictive comparison of the cross-auction heterogeneity
for the Gaussian and the Gamma model. Cross-auction heterogeneity is dis-
played as histograms of the bids divided by the corresponding book value in
that auction.
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Figure 4. Out-of-sample predictions for auctions 1-24 in the evaluation sam-
ple. Each subplot displays the realized price marked out by a star (if the item
is sold), the minimum bid (vertical dotted line), and the book value (vertical
dashed line). The title of each subplot displays the probability of zero bids (p0)
and exactly one bid (p1), where the first value in parenthesis comes from the
Gaussian model and the second value from the Gamma model. The solid and
dotted curves represent the predictive price densities for the Gaussian and the
Gamma model, respectively, conditional on at least two bids.
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Figure 5. Out-of-sample predictions for auctions 25-48 in the evaluation sam-
ple. Each subplot displays the realized price marked out by a star (if the item
is sold), the minimum bid (vertical dotted line), and the book value (vertical
dashed line). The title of each subplot displays the probability of zero bids (p0)
and exactly one bid (p1), where the first value in parenthesis comes from the
Gaussian model and the second value from the Gamma model. The solid and
dotted curves represent the predictive price densities for the Gaussian and the
Gamma model, respectively, conditional on at least two bids.
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Figure 6. Log price predictive probabilities evaluated at the actual price in
each auction, conditional on at least two bids for the Gaussian and the Gamma
model. Auctions 38-45 contains a single bid, and auctions 46-48 no bids.
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Figure 7. Log predictive probabilities for the actual outcome of either no bids,
one bid, or at least two bids in each auction for the Gaussian and the Gamma
model. Auctions 1-37 contains at least two bids, auctions 38-45 a single bid,
and auctions 46-48 no bids. The log predictive probability in auction 43 for
the Gamma model is not displayed since the probability equals zero.
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Figure 8. Box plot for the estimated skewness in the 48 test auctions given
the auction specific covariates, and the posterior means for the Gamma model
in Table 1.
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Figure 9. Posterior predictive comparisons of the within-auction dispersion
and the cross-auction heterogeneity for the Gamma and the Gaussian model.
The within-auction dispersion is defined as the difference between the highest
observed bid and the lowest bid. Cross-auction heterogeneity is displayed as
histograms of the bids across all auctions. The degree of skewness for the
simulated data, Sk, is equal to 2.
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Figure 10. Posterior predictive comparisons of the within-auction dispersion
and the cross-auction heterogeneity for the Gamma and the Gaussian model.
The within-auction dispersion is defined as the difference between the highest
observed bid and the lowest bid. Cross-auction heterogeneity is displayed as
histograms of the bids across all auctions. The degree of skewness for the
simulated data, Sk, is equal to 1.5.
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Figure 11. Posterior predictive comparisons of the within-auction dispersion
and the cross-auction heterogeneity for the Gamma and the Gaussian model.
The within-auction dispersion is defined as the difference between the highest
observed bid and the lowest bid. Cross-auction heterogeneity is displayed as
histograms of the bids across all auctions. The degree of skewness for the
simulated data, Sk, is equal to 0.5.


